namedotpg commited on
Commit
2dab408
1 Parent(s): f6a6e2c

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1335.40 +/- 398.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5992c9f904ef780b69f60e72cfa3512dde58a2019d5b54673ec0e548ddbdfb8e
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23ebde0ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23ebde0f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23ebde1000>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23ebde1090>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f23ebde1120>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f23ebde11b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23ebde1240>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23ebde12d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f23ebde1360>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23ebde13f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23ebde1480>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23ebde1510>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f23ebdcfa80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1688736208339502956,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEXLpj9CWyW+q+f1PkXxG0BEN6S+EoMqPyDj8r4Lr8W+hhvfvryrxL58pDo/W+96PzY4Oz4zZv6/mY1JvvkmFsDh1Qg/n4zEv3LMjr9BxJs/USNTv4P6Jj9q3Ai+dy+qwIDJBT9tYtE+98nXPm9G6r93CF29W/LSP4RIvb5SJpc9amy/P7F/4z3LORc/S6XfvmUSiz723rm/928jv4E6DD3NDLq+RYb3PZhNjL5+uku+w8vpPxXT+r5lpxg/qRY2P3NHDL59yei/jWdfvng8RL8p7fS/bWLRPvfJ1z6m3gs/ZF0hvh6WGUCVLXbAlbS2Pr/w3L9KnV+/2FJPv+XwCT46jZy+LY2EPt0eIL/eKCS+dzCWP8w0qr9hwck+Tk8fv36syzwANu69CawQv8B3Pj04h2y+GRW4P3asuj6GcinAgMkFP21i0T73ydc+b0bqv10mwT6c1AI/OpHnPuu+wj/ANWi++4ASP21cpj6o1Q4+Zm8QP+aIhL947RQ/UJ8QP/XLAr81v3DAWHMnvD0WFkBIXCs/PGAOwH3hab0J50I/NwRAv4RCg7/nvlu/SRWNvIDJBT8ufxzA98nXPm9G6r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwoq82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiIitvQAAAAAGAve/AAAAAHIA0z0AAAAA91HzPwAAAAArdcw9AAAAAEF97T8AAAAA01hZPQAAAADKMd+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzeWKtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC8P/T0AAAAAhLXwvwAAAAA2i7w9AAAAANPh2j8AAAAA1z/4vQAAAACowuw/AAAAAL03Gz0AAAAAIcLmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZ6QTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAsXpo8AAAAAC+A9r8AAAAAAw2PPQAAAACAGdo/AAAAADlJeT0AAAAAt4jyPwAAAAAKDn+8AAAAAE8v7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEUaa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATtgNPgAAAAAFWfW/AAAAAAA35jwAAAAAd3DrPwAAAAAIuYO9AAAAAEiT5D8AAAAAyyNZPQAAAADwTOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdpdZid8ReMAWyUTegDjAF0lEdAq4Zf/giu+3V9lChoBkdAkqVwNwzch2gHTegDaAhHQKuHCnAqNId1fZQoaAZHQJQ2hBjWkJtoB03oA2gIR0CrikEjPfKqdX2UKGgGR0CUlrPAO8TSaAdN6ANoCEdAq5HUI1LrX3V9lChoBkdAkrKr/ffoBGgHTegDaAhHQKuTsL4N7Sl1fZQoaAZHQI56X7rLQoloB03oA2gIR0CrlCd2X9iudX2UKGgGR0CVechuwX67aAdN6ANoCEdAq5a90FKTS3V9lChoBkdAlSI331zySWgHTegDaAhHQKuexs2vStx1fZQoaAZHQJTALEdeY2NoB03oA2gIR0CroXX6InBtdX2UKGgGR0CTPLIFNcnmaAdN6ANoCEdAq6IRpJwsG3V9lChoBkdAlRK/0qYqomgHTegDaAhHQKul85GSZBt1fZQoaAZHQJIl1Lsa86FoB03oA2gIR0CrruSm65G0dX2UKGgGR0CZoGWn0kGBaAdN6ANoCEdAq7C4Iv8IiXV9lChoBkdAmHH3PmganGgHTegDaAhHQKuxJnaFmFt1fZQoaAZHQJjR4zMzMzNoB03oA2gIR0Crs7+Zw4sFdX2UKGgGR0CX87UwztTlaAdN6ANoCEdAq7tibayrxXV9lChoBkdAmD5nKr7wa2gHTegDaAhHQKu9OF36hxp1fZQoaAZHQJk3VJPIn0FoB03oA2gIR0CrvaYht+CsdX2UKGgGR0CXkrIf8uSPaAdN6ANoCEdAq8FUR3/xUnV9lChoBkdAl8kJBw++umgHTegDaAhHQKvMMJtzjm11fZQoaAZHQJghkal1r7BoB03oA2gIR0CrzgeQuEmIdX2UKGgGR0CWlzSVGCqZaAdN6ANoCEdAq858RjBl+XV9lChoBkdAlUdTwYtQK2gHTegDaAhHQKvRECdSVGF1fZQoaAZHQJWB8nH/951oB03oA2gIR0Cr2JAy/KyOdX2UKGgGR0CWkwpfQa73aAdN6ANoCEdAq9pg3o9s8HV9lChoBkdAl85Z+2E0zmgHTegDaAhHQKva04tHxz91fZQoaAZHQJZtUfLcKw9oB03oA2gIR0Cr3XOerdWRdX2UKGgGR0B/oUOoYNy6aAdN6ANoCEdAq+ftLL6k7HV9lChoBkdAmX4Jy2hIv2gHTegDaAhHQKvqvQyhzvJ1fZQoaAZHQJgd0R3/xUhoB03oA2gIR0Cr62YsmOU/dX2UKGgGR0CQ7c0kWykcaAdN6ANoCEdAq+4AhB7eEnV9lChoBkdAk8yLhisnzGgHTegDaAhHQKv1v2ZAprl1fZQoaAZHQJkhKMOwxFloB03oA2gIR0Cr94bXQMQVdX2UKGgGR0CMiCzMzMzNaAdN6ANoCEdAq/fvSc9W63V9lChoBkdAlNzFTBInSmgHTegDaAhHQKv6dehPCVN1fZQoaAZHQJbZq2KEWZZoB03oA2gIR0CsAwSrYGt7dX2UKGgGR0CZU8MfRu0kaAdN6ANoCEdArAWoRNATqXV9lChoBkdAmZEKkyk9EGgHTegDaAhHQKwGVgAp8Wt1fZQoaAZHQJT2QEaESM9oB03oA2gIR0CsCkWNm16WdX2UKGgGR0CWU8yUs4DLaAdN6ANoCEdArBKVlbu+iHV9lChoBkdAmAyclb/wRWgHTegDaAhHQKwUahRIjGF1fZQoaAZHQJZbNC2MKkVoB03oA2gIR0CsFNSylenidX2UKGgGR0CVZRHFPznSaAdN6ANoCEdArBdeQuEmIHV9lChoBkdAh/2ruhK15WgHTegDaAhHQKwfBzLfUF11fZQoaAZHQIpcPlGPPs1oB03oA2gIR0CsIRNhVlwtdX2UKGgGR0CTO9MQEpy7aAdN6ANoCEdArCGxuZThpHV9lChoBkdAj62t0FKTS2gHTegDaAhHQKwlVdfsu4B1fZQoaAZHQJOELDCP6sRoB03oA2gIR0CsL9SWiUPhdX2UKGgGR0CVZFoRZlnRaAdN6ANoCEdArDGwrJ8v3HV9lChoBkdAkZI8BhhH9WgHTegDaAhHQKwyHGax5cF1fZQoaAZHQJJOfhisnzBoB03oA2gIR0CsNL1II4VAdX2UKGgGR0CVn+dcSoOyaAdN6ANoCEdArDx7Qswta3V9lChoBkdAheQOTJQtSWgHTegDaAhHQKw+bDIikft1fZQoaAZHQHi1/6CUX55oB03oA2gIR0CsPtrMTviMdX2UKGgGR0CXxSegte2NaAdN6ANoCEdArEFuYnfEXXV9lChoBkdAlSLHvlU6xWgHTegDaAhHQKxMsRAbADd1fZQoaAZHQJcqMtVaOghoB03oA2gIR0CsTwzbvgFYdX2UKGgGR0CXZOq33HrAaAdN6ANoCEdArE9zZDiOvXV9lChoBkdAjYJztsvZiGgHTegDaAhHQKxR/lQuVX51fZQoaAZHQJBSFiy6cy5oB03oA2gIR0CsWcpjDsMRdX2UKGgGR0CWIidN34bkaAdN6ANoCEdArFubkMkQgHV9lChoBkdAlChyQo1DSmgHTegDaAhHQKxcCHoouwp1fZQoaAZHQJUTEUbkwN9oB03oA2gIR0CsXpi1qnFYdX2UKGgGR0CJM2ckMTewaAdN6ANoCEdArGfld5Y5k3V9lChoBkdAmDuh7NSqEWgHTegDaAhHQKxq1qgRK6F1fZQoaAZHQJMMQkfLcKxoB03oA2gIR0Csa4B6By0bdX2UKGgGR0CbCgSJCSieaAdN6ANoCEdArG9yuSwGGHV9lChoBkdAlF7uzposZ2gHTegDaAhHQKx29VjqfOF1fZQoaAZHQJLp41gpjMFoB03oA2gIR0CseNVH4GlidX2UKGgGR0CYgADXe3x4aAdN6ANoCEdArHlGFrVOK3V9lChoBkdAl2xTAN5MUWgHTegDaAhHQKx7z6KtPpJ1fZQoaAZHQJXF4eyRjjJoB03oA2gIR0Csgz+WnjyXdX2UKGgGR0CPF01Bt1p1aAdN6ANoCEdArIXTlJYkmnV9lChoBkdAnP/+fdyksWgHTegDaAhHQKyGaunMt9R1fZQoaAZHQJoUJhz/6wdoB03oA2gIR0CsiiLdvbXZdX2UKGgGR0CW+Qa/ATIvaAdN6ANoCEdArJPoTGo73nV9lChoBkdAk+3bp/wy7GgHTegDaAhHQKyVulBQemx1fZQoaAZHQJudKtfXwspoB03oA2gIR0CslikH2RJVdX2UKGgGR0CYLR4oqkM1aAdN6ANoCEdArJiefoRqXXV9lChoBkdAnLJffwZwXWgHTegDaAhHQKygINBnjAB1fZQoaAZHQJi6QgyM1j1oB03oA2gIR0CsofXQtz0ZdX2UKGgGR0CX11z2OAAiaAdN6ANoCEdArKJla4c3l3V9lChoBkdAk+h5EYwZfmgHTegDaAhHQKylNgrpaA51fZQoaAZHQJjKdbpu/DdoB03oA2gIR0CssLe40/GEdX2UKGgGR0Ccb4eDnNgSaAdN6ANoCEdArLLaNVBD5XV9lChoBkdAlLSikCV8kWgHTegDaAhHQKyzSBp5/sp1fZQoaAZHQJS7eg9Net1oB03oA2gIR0CstdbLt/nXdX2UKGgGR0CXnHjurp7kaAdN6ANoCEdArL2C8nNPg3V9lChoBkdAmoUbPhQ3xWgHTegDaAhHQKy/YCf6Gg11fZQoaAZHQI/djuOS4e9oB03oA2gIR0Csv8y/TLGJdX2UKGgGR0CXQAQRf4RFaAdN6ANoCEdArMJRvWH1vnV9lChoBkdAlikJwsGxEGgHTegDaAhHQKzMThKlHjJ1fZQoaAZHQIROQO+ZgG9oB03oA2gIR0Cszz4CIUJwdX2UKGgGR0CVy8s41gpjaAdN6ANoCEdArM/pgPVd5nV9lChoBkdAXZ3WH1vl2mgHTegDaAhHQKzTa/etSyd1fZQoaAZHQJe13u+h4+toB03oA2gIR0Cs2v0nPVurdX2UKGgGR0CWT4Dx9XtCaAdN6ANoCEdArNzbaK1og3V9lChoBkdAlyxqy0KJEmgHTegDaAhHQKzdRv5xiod1fZQoaAZHQIqJMTakAPxoB03oA2gIR0Cs399FWn0kdX2UKGgGR0CH/6EFnqVyaAdN6ANoCEdArOgXx4IKMXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b384fb8d53ceec6fad0b6dbc58a637d11635ff6b1d134c2a8e42f10d81fa1a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e9142e384f813acb61ea9c67f6da4fcecd64bc32cfdf0403161ff52edbe8371
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23ebde0ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23ebde0f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23ebde1000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23ebde1090>", "_build": "<function ActorCriticPolicy._build at 0x7f23ebde1120>", "forward": "<function ActorCriticPolicy.forward at 0x7f23ebde11b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23ebde1240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23ebde12d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23ebde1360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23ebde13f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23ebde1480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23ebde1510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23ebdcfa80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688736208339502956, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEXLpj9CWyW+q+f1PkXxG0BEN6S+EoMqPyDj8r4Lr8W+hhvfvryrxL58pDo/W+96PzY4Oz4zZv6/mY1JvvkmFsDh1Qg/n4zEv3LMjr9BxJs/USNTv4P6Jj9q3Ai+dy+qwIDJBT9tYtE+98nXPm9G6r93CF29W/LSP4RIvb5SJpc9amy/P7F/4z3LORc/S6XfvmUSiz723rm/928jv4E6DD3NDLq+RYb3PZhNjL5+uku+w8vpPxXT+r5lpxg/qRY2P3NHDL59yei/jWdfvng8RL8p7fS/bWLRPvfJ1z6m3gs/ZF0hvh6WGUCVLXbAlbS2Pr/w3L9KnV+/2FJPv+XwCT46jZy+LY2EPt0eIL/eKCS+dzCWP8w0qr9hwck+Tk8fv36syzwANu69CawQv8B3Pj04h2y+GRW4P3asuj6GcinAgMkFP21i0T73ydc+b0bqv10mwT6c1AI/OpHnPuu+wj/ANWi++4ASP21cpj6o1Q4+Zm8QP+aIhL947RQ/UJ8QP/XLAr81v3DAWHMnvD0WFkBIXCs/PGAOwH3hab0J50I/NwRAv4RCg7/nvlu/SRWNvIDJBT8ufxzA98nXPm9G6r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwoq82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiIitvQAAAAAGAve/AAAAAHIA0z0AAAAA91HzPwAAAAArdcw9AAAAAEF97T8AAAAA01hZPQAAAADKMd+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzeWKtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC8P/T0AAAAAhLXwvwAAAAA2i7w9AAAAANPh2j8AAAAA1z/4vQAAAACowuw/AAAAAL03Gz0AAAAAIcLmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZ6QTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAsXpo8AAAAAC+A9r8AAAAAAw2PPQAAAACAGdo/AAAAADlJeT0AAAAAt4jyPwAAAAAKDn+8AAAAAE8v7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEUaa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATtgNPgAAAAAFWfW/AAAAAAA35jwAAAAAd3DrPwAAAAAIuYO9AAAAAEiT5D8AAAAAyyNZPQAAAADwTOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdpdZid8ReMAWyUTegDjAF0lEdAq4Zf/giu+3V9lChoBkdAkqVwNwzch2gHTegDaAhHQKuHCnAqNId1fZQoaAZHQJQ2hBjWkJtoB03oA2gIR0CrikEjPfKqdX2UKGgGR0CUlrPAO8TSaAdN6ANoCEdAq5HUI1LrX3V9lChoBkdAkrKr/ffoBGgHTegDaAhHQKuTsL4N7Sl1fZQoaAZHQI56X7rLQoloB03oA2gIR0CrlCd2X9iudX2UKGgGR0CVechuwX67aAdN6ANoCEdAq5a90FKTS3V9lChoBkdAlSI331zySWgHTegDaAhHQKuexs2vStx1fZQoaAZHQJTALEdeY2NoB03oA2gIR0CroXX6InBtdX2UKGgGR0CTPLIFNcnmaAdN6ANoCEdAq6IRpJwsG3V9lChoBkdAlRK/0qYqomgHTegDaAhHQKul85GSZBt1fZQoaAZHQJIl1Lsa86FoB03oA2gIR0CrruSm65G0dX2UKGgGR0CZoGWn0kGBaAdN6ANoCEdAq7C4Iv8IiXV9lChoBkdAmHH3PmganGgHTegDaAhHQKuxJnaFmFt1fZQoaAZHQJjR4zMzMzNoB03oA2gIR0Crs7+Zw4sFdX2UKGgGR0CX87UwztTlaAdN6ANoCEdAq7tibayrxXV9lChoBkdAmD5nKr7wa2gHTegDaAhHQKu9OF36hxp1fZQoaAZHQJk3VJPIn0FoB03oA2gIR0CrvaYht+CsdX2UKGgGR0CXkrIf8uSPaAdN6ANoCEdAq8FUR3/xUnV9lChoBkdAl8kJBw++umgHTegDaAhHQKvMMJtzjm11fZQoaAZHQJghkal1r7BoB03oA2gIR0CrzgeQuEmIdX2UKGgGR0CWlzSVGCqZaAdN6ANoCEdAq858RjBl+XV9lChoBkdAlUdTwYtQK2gHTegDaAhHQKvRECdSVGF1fZQoaAZHQJWB8nH/951oB03oA2gIR0Cr2JAy/KyOdX2UKGgGR0CWkwpfQa73aAdN6ANoCEdAq9pg3o9s8HV9lChoBkdAl85Z+2E0zmgHTegDaAhHQKva04tHxz91fZQoaAZHQJZtUfLcKw9oB03oA2gIR0Cr3XOerdWRdX2UKGgGR0B/oUOoYNy6aAdN6ANoCEdAq+ftLL6k7HV9lChoBkdAmX4Jy2hIv2gHTegDaAhHQKvqvQyhzvJ1fZQoaAZHQJgd0R3/xUhoB03oA2gIR0Cr62YsmOU/dX2UKGgGR0CQ7c0kWykcaAdN6ANoCEdAq+4AhB7eEnV9lChoBkdAk8yLhisnzGgHTegDaAhHQKv1v2ZAprl1fZQoaAZHQJkhKMOwxFloB03oA2gIR0Cr94bXQMQVdX2UKGgGR0CMiCzMzMzNaAdN6ANoCEdAq/fvSc9W63V9lChoBkdAlNzFTBInSmgHTegDaAhHQKv6dehPCVN1fZQoaAZHQJbZq2KEWZZoB03oA2gIR0CsAwSrYGt7dX2UKGgGR0CZU8MfRu0kaAdN6ANoCEdArAWoRNATqXV9lChoBkdAmZEKkyk9EGgHTegDaAhHQKwGVgAp8Wt1fZQoaAZHQJT2QEaESM9oB03oA2gIR0CsCkWNm16WdX2UKGgGR0CWU8yUs4DLaAdN6ANoCEdArBKVlbu+iHV9lChoBkdAmAyclb/wRWgHTegDaAhHQKwUahRIjGF1fZQoaAZHQJZbNC2MKkVoB03oA2gIR0CsFNSylenidX2UKGgGR0CVZRHFPznSaAdN6ANoCEdArBdeQuEmIHV9lChoBkdAh/2ruhK15WgHTegDaAhHQKwfBzLfUF11fZQoaAZHQIpcPlGPPs1oB03oA2gIR0CsIRNhVlwtdX2UKGgGR0CTO9MQEpy7aAdN6ANoCEdArCGxuZThpHV9lChoBkdAj62t0FKTS2gHTegDaAhHQKwlVdfsu4B1fZQoaAZHQJOELDCP6sRoB03oA2gIR0CsL9SWiUPhdX2UKGgGR0CVZFoRZlnRaAdN6ANoCEdArDGwrJ8v3HV9lChoBkdAkZI8BhhH9WgHTegDaAhHQKwyHGax5cF1fZQoaAZHQJJOfhisnzBoB03oA2gIR0CsNL1II4VAdX2UKGgGR0CVn+dcSoOyaAdN6ANoCEdArDx7Qswta3V9lChoBkdAheQOTJQtSWgHTegDaAhHQKw+bDIikft1fZQoaAZHQHi1/6CUX55oB03oA2gIR0CsPtrMTviMdX2UKGgGR0CXxSegte2NaAdN6ANoCEdArEFuYnfEXXV9lChoBkdAlSLHvlU6xWgHTegDaAhHQKxMsRAbADd1fZQoaAZHQJcqMtVaOghoB03oA2gIR0CsTwzbvgFYdX2UKGgGR0CXZOq33HrAaAdN6ANoCEdArE9zZDiOvXV9lChoBkdAjYJztsvZiGgHTegDaAhHQKxR/lQuVX51fZQoaAZHQJBSFiy6cy5oB03oA2gIR0CsWcpjDsMRdX2UKGgGR0CWIidN34bkaAdN6ANoCEdArFubkMkQgHV9lChoBkdAlChyQo1DSmgHTegDaAhHQKxcCHoouwp1fZQoaAZHQJUTEUbkwN9oB03oA2gIR0CsXpi1qnFYdX2UKGgGR0CJM2ckMTewaAdN6ANoCEdArGfld5Y5k3V9lChoBkdAmDuh7NSqEWgHTegDaAhHQKxq1qgRK6F1fZQoaAZHQJMMQkfLcKxoB03oA2gIR0Csa4B6By0bdX2UKGgGR0CbCgSJCSieaAdN6ANoCEdArG9yuSwGGHV9lChoBkdAlF7uzposZ2gHTegDaAhHQKx29VjqfOF1fZQoaAZHQJLp41gpjMFoB03oA2gIR0CseNVH4GlidX2UKGgGR0CYgADXe3x4aAdN6ANoCEdArHlGFrVOK3V9lChoBkdAl2xTAN5MUWgHTegDaAhHQKx7z6KtPpJ1fZQoaAZHQJXF4eyRjjJoB03oA2gIR0Csgz+WnjyXdX2UKGgGR0CPF01Bt1p1aAdN6ANoCEdArIXTlJYkmnV9lChoBkdAnP/+fdyksWgHTegDaAhHQKyGaunMt9R1fZQoaAZHQJoUJhz/6wdoB03oA2gIR0CsiiLdvbXZdX2UKGgGR0CW+Qa/ATIvaAdN6ANoCEdArJPoTGo73nV9lChoBkdAk+3bp/wy7GgHTegDaAhHQKyVulBQemx1fZQoaAZHQJudKtfXwspoB03oA2gIR0CslikH2RJVdX2UKGgGR0CYLR4oqkM1aAdN6ANoCEdArJiefoRqXXV9lChoBkdAnLJffwZwXWgHTegDaAhHQKygINBnjAB1fZQoaAZHQJi6QgyM1j1oB03oA2gIR0CsofXQtz0ZdX2UKGgGR0CX11z2OAAiaAdN6ANoCEdArKJla4c3l3V9lChoBkdAk+h5EYwZfmgHTegDaAhHQKylNgrpaA51fZQoaAZHQJjKdbpu/DdoB03oA2gIR0CssLe40/GEdX2UKGgGR0Ccb4eDnNgSaAdN6ANoCEdArLLaNVBD5XV9lChoBkdAlLSikCV8kWgHTegDaAhHQKyzSBp5/sp1fZQoaAZHQJS7eg9Net1oB03oA2gIR0CstdbLt/nXdX2UKGgGR0CXnHjurp7kaAdN6ANoCEdArL2C8nNPg3V9lChoBkdAmoUbPhQ3xWgHTegDaAhHQKy/YCf6Gg11fZQoaAZHQI/djuOS4e9oB03oA2gIR0Csv8y/TLGJdX2UKGgGR0CXQAQRf4RFaAdN6ANoCEdArMJRvWH1vnV9lChoBkdAlikJwsGxEGgHTegDaAhHQKzMThKlHjJ1fZQoaAZHQIROQO+ZgG9oB03oA2gIR0Cszz4CIUJwdX2UKGgGR0CVy8s41gpjaAdN6ANoCEdArM/pgPVd5nV9lChoBkdAXZ3WH1vl2mgHTegDaAhHQKzTa/etSyd1fZQoaAZHQJe13u+h4+toB03oA2gIR0Cs2v0nPVurdX2UKGgGR0CWT4Dx9XtCaAdN6ANoCEdArNzbaK1og3V9lChoBkdAlyxqy0KJEmgHTegDaAhHQKzdRv5xiod1fZQoaAZHQIqJMTakAPxoB03oA2gIR0Cs399FWn0kdX2UKGgGR0CH/6EFnqVyaAdN6ANoCEdArOgXx4IKMXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2ea3066486724a02edb163f6076607bdd9c4eea91247455fa77f3a9802b397
3
+ size 1005154
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1335.40285928385, "std_reward": 398.5419451418363, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-07T15:16:50.781581"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82bfe7d6497b077340fbb47dae98d2c9107596a0d749af4dee185b1c06284fe0
3
+ size 2176