--- license: mit pipeline_tag: text-generation --- # Intro [Activation Beacon](https://arxiv.org/abs/2401.03462) is a plug-in module to transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts. # Environment ``` pip install transformers pip install flash-attn --no-build-isolation ``` # Usage ```python import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "namespace-Pt/beacon-qwen-2-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model = model.cuda().eval() with torch.no_grad(): # short context messages = [{"role": "user", "content": "Tell me about yourself."}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**inputs, max_new_tokens=50) print(f"Input Length: {inputs['input_ids'].shape[1]}") print(f"Output: {repr(tokenizer.decode(outputs[0], skip_special_tokens=True))}") # reset memory before new generation task model.memory.reset() # long context with open("infbench.json", encoding="utf-8") as f: example = json.load(f) messages = [{"role": "user", "content": example["context"]}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:] print("*"*20) print(f"Input Length: {inputs['input_ids'].shape[1]}") print(f"Answers: {example['answer']}") print(f"Prediction: {tokenizer.decode(outputs[0], skip_special_tokens=True)}") ``` **NOTE**: It's okay to see warnings like `This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (32768). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.` Just ignore it.