--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: namwoo/distilbert-base-uncased-finetuned-ner results: [] --- # namwoo/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0339 - Validation Loss: 0.0623 - Train Precision: 0.9239 - Train Recall: 0.9335 - Train F1: 0.9287 - Train Accuracy: 0.9829 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1982 | 0.0715 | 0.9040 | 0.9218 | 0.9128 | 0.9799 | 0 | | 0.0537 | 0.0618 | 0.9202 | 0.9305 | 0.9254 | 0.9827 | 1 | | 0.0339 | 0.0623 | 0.9239 | 0.9335 | 0.9287 | 0.9829 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1