nanalysenko commited on
Commit
fc61be6
1 Parent(s): d09d149

Upload 11 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ai-forever/ruRoberta-large
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:19383
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: '12.02.2.17 Панель ингаляционных аллергенов № 9 (IgE): эпителий
16
+ кошки, перхоть собаки, овсяница луговая'
17
+ sentences:
18
+ - Панель аллергенов плесени № 1 IgE (penicillium notatum, cladosporium herbarum,
19
+ aspergillus fumigatus, candida albicans, alternaria tenuis),
20
+ - Панель пищевых аллергенов № 51 IgE (помидор, картофель, морковь, чеснок, горчица),
21
+ - Прием (осмотр, консультация) врача-психотерапевта первичный
22
+ - source_sentence: '12.02.2.2.04 Панель пищевых аллергенов № 2 (IgG): треска, тунец,
23
+ креветки, лосось, мидии'
24
+ sentences:
25
+ - Панель пищевых аллергенов № 5 IgE (яичный белок, молоко, треска, пшеничная мука,
26
+ арахис, соевые бобы),
27
+ - Панель пищевых аллергенов № 7 IgE (яичный белок, рис, коровье молоко, aрахис,
28
+ пшеничная мука, соевые бобы),
29
+ - Панель ингаляционных аллергенов № 3 IgE (клещ - дерматофаг перинный, эпителий
30
+ кошки, эпителий собаки, плесневый гриб (Aspergillus fumigatus)),
31
+ - source_sentence: 12.4.6.04 Аллерген f27 - говядина, IgE (ImmunoCAP)
32
+ sentences:
33
+ - Панель ингаляционных аллергенов № 3 IgE (клещ - дерматофаг перинный, эпителий
34
+ кошки, эпителий собаки, плесневый гриб (Aspergillus fumigatus)),
35
+ - Панель аллергенов животных/перья птиц/ № 71 IgE (перо гуся, перо курицы, перо
36
+ утки, перо индюка),
37
+ - Панель ингаляционных аллергенов № 6 IgE (плесневый гриб (Cladosporium herbarum),
38
+ тимофеевка, плесневый гриб (Alternaria tenuis), береза, полынь обыкновенная),
39
+ - source_sentence: Микробиологическое исследование биосубстатов на микрофлору (отделяемое
40
+ зева, носа, глаз, ушей, гениталий, ран,мокрота) с постановкой чувствительности
41
+ [Мартьянова]
42
+ sentences:
43
+ - Панель ингаляционных аллергенов № 9 IgE (эпителий кошки, перхоть собаки, овсяница
44
+ луговая, плесневый гриб (Alternaria tenuis), подорожник),
45
+ - Панель аллергенов плесени № 1 IgE (penicillium notatum, cladosporium herbarum,
46
+ aspergillus fumigatus, candida albicans, alternaria tenuis),
47
+ - Посев отделяемого верхних дыхательных путей на микрофлору, определение чувствительности
48
+ к антимикробным препаратам (одна локализация) (Upper Respiratory Culture. Bacteria
49
+ Identification and Antibiotic Susceptibility Testing)*
50
+ - source_sentence: НЕТ ДО 20.04!!!!!!!! 12.01.16 Аллергокомпонент f77 - бета-лактоглобулин
51
+ nBos d 5, IgE (ImmunoCAP)
52
+ sentences:
53
+ - Ультразвуковое исследование плода
54
+ - Панель аллергенов животных № 70 IgE (эпителий морской свинки, эпителий кролика,
55
+ хомяк, крыса, мышь),
56
+ - Панель пищевых аллергенов № 15 IgE (апельсин, банан, яблоко, персик),
57
+ ---
58
+
59
+ # SentenceTransformer based on ai-forever/ruRoberta-large
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) <!-- at revision 5192d064ca6ac67c14c40e017ce41612e010f05f -->
68
+ - **Maximum Sequence Length:** 514 tokens
69
+ - **Output Dimensionality:** 1024 tokens
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
86
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'НЕТ ДО 20.04!!!!!!!! 12.01.16 Аллергокомпонент f77 - бета-лактоглобулин nBos d 5, IgE (ImmunoCAP)',
109
+ 'Панель аллергенов животных № 70 IgE (эпителий морской свинки, эпителий кролика, хомяк, крыса, мышь),',
110
+ 'Ультразвуковое исследование плода',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 1024]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ <!--
147
+ ## Bias, Risks and Limitations
148
+
149
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
150
+ -->
151
+
152
+ <!--
153
+ ### Recommendations
154
+
155
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
156
+ -->
157
+
158
+ ## Training Details
159
+
160
+ ### Training Dataset
161
+
162
+ #### Unnamed Dataset
163
+
164
+
165
+ * Size: 19,383 training samples
166
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
167
+ * Approximate statistics based on the first 1000 samples:
168
+ | | sentence_0 | sentence_1 |
169
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
170
+ | type | string | string |
171
+ | details | <ul><li>min: 5 tokens</li><li>mean: 30.0 tokens</li><li>max: 121 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 30.73 tokens</li><li>max: 105 tokens</li></ul> |
172
+ * Samples:
173
+ | sentence_0 | sentence_1 |
174
+ |:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
175
+ | <code>Ингибитор VIII фактора</code> | <code>Исследование уровня антигена фактора Виллебранда</code> |
176
+ | <code>13.01.02 Антитела к экстрагируемому нуклеарному АГ (ЭНА/ENA-скрин), сыворотка крови</code> | <code>Антитела к экстрагируемому ядерному антигену, кач.</code> |
177
+ | <code>Нет 12.4.092 Аллерген f203 - фисташковые орехи, IgE</code> | <code>Панель аллергенов деревьев № 2 IgE (клен ясенелистный, тополь, вяз, дуб, пекан),</code> |
178
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
179
+ ```json
180
+ {
181
+ "scale": 20.0,
182
+ "similarity_fct": "cos_sim"
183
+ }
184
+ ```
185
+
186
+ ### Training Hyperparameters
187
+ #### Non-Default Hyperparameters
188
+
189
+ - `per_device_train_batch_size`: 4
190
+ - `per_device_eval_batch_size`: 4
191
+ - `num_train_epochs`: 11
192
+ - `multi_dataset_batch_sampler`: round_robin
193
+
194
+ #### All Hyperparameters
195
+ <details><summary>Click to expand</summary>
196
+
197
+ - `overwrite_output_dir`: False
198
+ - `do_predict`: False
199
+ - `eval_strategy`: no
200
+ - `prediction_loss_only`: True
201
+ - `per_device_train_batch_size`: 4
202
+ - `per_device_eval_batch_size`: 4
203
+ - `per_gpu_train_batch_size`: None
204
+ - `per_gpu_eval_batch_size`: None
205
+ - `gradient_accumulation_steps`: 1
206
+ - `eval_accumulation_steps`: None
207
+ - `learning_rate`: 5e-05
208
+ - `weight_decay`: 0.0
209
+ - `adam_beta1`: 0.9
210
+ - `adam_beta2`: 0.999
211
+ - `adam_epsilon`: 1e-08
212
+ - `max_grad_norm`: 1
213
+ - `num_train_epochs`: 11
214
+ - `max_steps`: -1
215
+ - `lr_scheduler_type`: linear
216
+ - `lr_scheduler_kwargs`: {}
217
+ - `warmup_ratio`: 0.0
218
+ - `warmup_steps`: 0
219
+ - `log_level`: passive
220
+ - `log_level_replica`: warning
221
+ - `log_on_each_node`: True
222
+ - `logging_nan_inf_filter`: True
223
+ - `save_safetensors`: True
224
+ - `save_on_each_node`: False
225
+ - `save_only_model`: False
226
+ - `restore_callback_states_from_checkpoint`: False
227
+ - `no_cuda`: False
228
+ - `use_cpu`: False
229
+ - `use_mps_device`: False
230
+ - `seed`: 42
231
+ - `data_seed`: None
232
+ - `jit_mode_eval`: False
233
+ - `use_ipex`: False
234
+ - `bf16`: False
235
+ - `fp16`: False
236
+ - `fp16_opt_level`: O1
237
+ - `half_precision_backend`: auto
238
+ - `bf16_full_eval`: False
239
+ - `fp16_full_eval`: False
240
+ - `tf32`: None
241
+ - `local_rank`: 0
242
+ - `ddp_backend`: None
243
+ - `tpu_num_cores`: None
244
+ - `tpu_metrics_debug`: False
245
+ - `debug`: []
246
+ - `dataloader_drop_last`: False
247
+ - `dataloader_num_workers`: 0
248
+ - `dataloader_prefetch_factor`: None
249
+ - `past_index`: -1
250
+ - `disable_tqdm`: False
251
+ - `remove_unused_columns`: True
252
+ - `label_names`: None
253
+ - `load_best_model_at_end`: False
254
+ - `ignore_data_skip`: False
255
+ - `fsdp`: []
256
+ - `fsdp_min_num_params`: 0
257
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
258
+ - `fsdp_transformer_layer_cls_to_wrap`: None
259
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
260
+ - `deepspeed`: None
261
+ - `label_smoothing_factor`: 0.0
262
+ - `optim`: adamw_torch
263
+ - `optim_args`: None
264
+ - `adafactor`: False
265
+ - `group_by_length`: False
266
+ - `length_column_name`: length
267
+ - `ddp_find_unused_parameters`: None
268
+ - `ddp_bucket_cap_mb`: None
269
+ - `ddp_broadcast_buffers`: False
270
+ - `dataloader_pin_memory`: True
271
+ - `dataloader_persistent_workers`: False
272
+ - `skip_memory_metrics`: True
273
+ - `use_legacy_prediction_loop`: False
274
+ - `push_to_hub`: False
275
+ - `resume_from_checkpoint`: None
276
+ - `hub_model_id`: None
277
+ - `hub_strategy`: every_save
278
+ - `hub_private_repo`: False
279
+ - `hub_always_push`: False
280
+ - `gradient_checkpointing`: False
281
+ - `gradient_checkpointing_kwargs`: None
282
+ - `include_inputs_for_metrics`: False
283
+ - `eval_do_concat_batches`: True
284
+ - `fp16_backend`: auto
285
+ - `push_to_hub_model_id`: None
286
+ - `push_to_hub_organization`: None
287
+ - `mp_parameters`:
288
+ - `auto_find_batch_size`: False
289
+ - `full_determinism`: False
290
+ - `torchdynamo`: None
291
+ - `ray_scope`: last
292
+ - `ddp_timeout`: 1800
293
+ - `torch_compile`: False
294
+ - `torch_compile_backend`: None
295
+ - `torch_compile_mode`: None
296
+ - `dispatch_batches`: None
297
+ - `split_batches`: None
298
+ - `include_tokens_per_second`: False
299
+ - `include_num_input_tokens_seen`: False
300
+ - `neftune_noise_alpha`: None
301
+ - `optim_target_modules`: None
302
+ - `batch_eval_metrics`: False
303
+ - `batch_sampler`: batch_sampler
304
+ - `multi_dataset_batch_sampler`: round_robin
305
+
306
+ </details>
307
+
308
+ ### Training Logs
309
+ <details><summary>Click to expand</summary>
310
+
311
+ | Epoch | Step | Training Loss |
312
+ |:-------:|:-----:|:-------------:|
313
+ | 0.1032 | 500 | 0.7937 |
314
+ | 0.2064 | 1000 | 0.5179 |
315
+ | 0.3095 | 1500 | 0.5271 |
316
+ | 0.4127 | 2000 | 0.5696 |
317
+ | 0.5159 | 2500 | 0.5232 |
318
+ | 0.6191 | 3000 | 0.6401 |
319
+ | 0.7222 | 3500 | 0.6337 |
320
+ | 0.8254 | 4000 | 0.9436 |
321
+ | 0.9286 | 4500 | 1.3872 |
322
+ | 1.0318 | 5000 | 1.3834 |
323
+ | 1.1350 | 5500 | 0.9831 |
324
+ | 1.2381 | 6000 | 1.0122 |
325
+ | 1.3413 | 6500 | 1.3708 |
326
+ | 1.4445 | 7000 | 1.3794 |
327
+ | 1.5477 | 7500 | 1.3784 |
328
+ | 1.6508 | 8000 | 1.3856 |
329
+ | 1.7540 | 8500 | 1.3809 |
330
+ | 1.8572 | 9000 | 1.3776 |
331
+ | 1.9604 | 9500 | 1.0041 |
332
+ | 2.0636 | 10000 | 0.8559 |
333
+ | 2.1667 | 10500 | 0.8531 |
334
+ | 2.2699 | 11000 | 0.8446 |
335
+ | 2.3731 | 11500 | 0.8487 |
336
+ | 2.4763 | 12000 | 1.0807 |
337
+ | 2.5794 | 12500 | 1.3792 |
338
+ | 2.6826 | 13000 | 1.3923 |
339
+ | 2.7858 | 13500 | 1.3787 |
340
+ | 2.8890 | 14000 | 1.3803 |
341
+ | 2.9922 | 14500 | 1.3641 |
342
+ | 3.0953 | 15000 | 1.3725 |
343
+ | 3.1985 | 15500 | 1.3624 |
344
+ | 3.3017 | 16000 | 1.3659 |
345
+ | 3.4049 | 16500 | 1.3609 |
346
+ | 3.5080 | 17000 | 1.3496 |
347
+ | 3.6112 | 17500 | 1.3639 |
348
+ | 3.7144 | 18000 | 1.3487 |
349
+ | 3.8176 | 18500 | 1.3463 |
350
+ | 3.9208 | 19000 | 1.336 |
351
+ | 4.0239 | 19500 | 1.3451 |
352
+ | 4.1271 | 20000 | 1.3363 |
353
+ | 4.2303 | 20500 | 1.3411 |
354
+ | 4.3335 | 21000 | 1.3376 |
355
+ | 4.4366 | 21500 | 1.3294 |
356
+ | 4.5398 | 22000 | 1.3281 |
357
+ | 4.6430 | 22500 | 1.3323 |
358
+ | 4.7462 | 23000 | 1.3411 |
359
+ | 4.8494 | 23500 | 1.3162 |
360
+ | 4.9525 | 24000 | 1.3204 |
361
+ | 5.0557 | 24500 | 1.324 |
362
+ | 5.1589 | 25000 | 1.3253 |
363
+ | 5.2621 | 25500 | 1.3283 |
364
+ | 5.3652 | 26000 | 1.3298 |
365
+ | 5.4684 | 26500 | 1.3144 |
366
+ | 5.5716 | 27000 | 1.3162 |
367
+ | 5.6748 | 27500 | 1.3148 |
368
+ | 5.7780 | 28000 | 1.3254 |
369
+ | 5.8811 | 28500 | 1.319 |
370
+ | 5.9843 | 29000 | 1.3134 |
371
+ | 6.0875 | 29500 | 1.3184 |
372
+ | 6.1907 | 30000 | 1.3049 |
373
+ | 6.2939 | 30500 | 1.3167 |
374
+ | 6.3970 | 31000 | 1.3192 |
375
+ | 6.5002 | 31500 | 1.2926 |
376
+ | 6.6034 | 32000 | 1.3035 |
377
+ | 6.7066 | 32500 | 1.3117 |
378
+ | 6.8097 | 33000 | 1.3093 |
379
+ | 6.9129 | 33500 | 1.278 |
380
+ | 7.0161 | 34000 | 1.3143 |
381
+ | 7.1193 | 34500 | 1.3144 |
382
+ | 7.2225 | 35000 | 1.304 |
383
+ | 7.3256 | 35500 | 1.3066 |
384
+ | 7.4288 | 36000 | 1.2916 |
385
+ | 7.5320 | 36500 | 1.2943 |
386
+ | 7.6352 | 37000 | 1.2883 |
387
+ | 7.7383 | 37500 | 1.3014 |
388
+ | 7.8415 | 38000 | 1.3005 |
389
+ | 7.9447 | 38500 | 1.2699 |
390
+ | 8.0479 | 39000 | 1.3042 |
391
+ | 8.1511 | 39500 | 1.289 |
392
+ | 8.2542 | 40000 | 1.3012 |
393
+ | 8.3574 | 40500 | 1.3017 |
394
+ | 8.4606 | 41000 | 1.272 |
395
+ | 8.5638 | 41500 | 1.2939 |
396
+ | 8.6669 | 42000 | 1.2764 |
397
+ | 8.7701 | 42500 | 1.2908 |
398
+ | 8.8733 | 43000 | 1.2619 |
399
+ | 8.9765 | 43500 | 1.2791 |
400
+ | 9.0797 | 44000 | 1.2722 |
401
+ | 9.1828 | 44500 | 1.278 |
402
+ | 9.2860 | 45000 | 1.2911 |
403
+ | 9.3892 | 45500 | 1.2791 |
404
+ | 9.4924 | 46000 | 1.2791 |
405
+ | 9.5955 | 46500 | 1.2782 |
406
+ | 9.6987 | 47000 | 1.2789 |
407
+ | 9.8019 | 47500 | 1.2858 |
408
+ | 9.9051 | 48000 | 1.2601 |
409
+ | 10.0083 | 48500 | 1.29 |
410
+ | 10.1114 | 49000 | 1.276 |
411
+ | 10.2146 | 49500 | 1.2801 |
412
+ | 10.3178 | 50000 | 1.2853 |
413
+ | 10.4210 | 50500 | 1.2655 |
414
+ | 10.5241 | 51000 | 1.271 |
415
+ | 10.6273 | 51500 | 1.2633 |
416
+ | 10.7305 | 52000 | 1.2565 |
417
+ | 10.8337 | 52500 | 1.2755 |
418
+ | 10.9369 | 53000 | 1.2567 |
419
+
420
+ </details>
421
+
422
+ ### Framework Versions
423
+ - Python: 3.10.12
424
+ - Sentence Transformers: 3.0.1
425
+ - Transformers: 4.41.2
426
+ - PyTorch: 2.3.0+cu121
427
+ - Accelerate: 0.31.0
428
+ - Datasets: 2.20.0
429
+ - Tokenizers: 0.19.1
430
+
431
+ ## Citation
432
+
433
+ ### BibTeX
434
+
435
+ #### Sentence Transformers
436
+ ```bibtex
437
+ @inproceedings{reimers-2019-sentence-bert,
438
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
439
+ author = "Reimers, Nils and Gurevych, Iryna",
440
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
441
+ month = "11",
442
+ year = "2019",
443
+ publisher = "Association for Computational Linguistics",
444
+ url = "https://arxiv.org/abs/1908.10084",
445
+ }
446
+ ```
447
+
448
+ #### MultipleNegativesRankingLoss
449
+ ```bibtex
450
+ @misc{henderson2017efficient,
451
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
452
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
453
+ year={2017},
454
+ eprint={1705.00652},
455
+ archivePrefix={arXiv},
456
+ primaryClass={cs.CL}
457
+ }
458
+ ```
459
+
460
+ <!--
461
+ ## Glossary
462
+
463
+ *Clearly define terms in order to be accessible across audiences.*
464
+ -->
465
+
466
+ <!--
467
+ ## Model Card Authors
468
+
469
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
470
+ -->
471
+
472
+ <!--
473
+ ## Model Card Contact
474
+
475
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
476
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ai-forever/ruRoberta-large",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 1,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 4096,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 514,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff