nanalysenko
commited on
Commit
•
fc61be6
1
Parent(s):
d09d149
Upload 11 files
Browse files- 1_Pooling/config.json +10 -0
- README.md +476 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ai-forever/ruRoberta-large
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:19383
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: '12.02.2.17 Панель ингаляционных аллергенов № 9 (IgE): эпителий
|
16 |
+
кошки, перхоть собаки, овсяница луговая'
|
17 |
+
sentences:
|
18 |
+
- Панель аллергенов плесени № 1 IgE (penicillium notatum, cladosporium herbarum,
|
19 |
+
aspergillus fumigatus, candida albicans, alternaria tenuis),
|
20 |
+
- Панель пищевых аллергенов № 51 IgE (помидор, картофель, морковь, чеснок, горчица),
|
21 |
+
- Прием (осмотр, консультация) врача-психотерапевта первичный
|
22 |
+
- source_sentence: '12.02.2.2.04 Панель пищевых аллергенов № 2 (IgG): треска, тунец,
|
23 |
+
креветки, лосось, мидии'
|
24 |
+
sentences:
|
25 |
+
- Панель пищевых аллергенов № 5 IgE (яичный белок, молоко, треска, пшеничная мука,
|
26 |
+
арахис, соевые бобы),
|
27 |
+
- Панель пищевых аллергенов № 7 IgE (яичный белок, рис, коровье молоко, aрахис,
|
28 |
+
пшеничная мука, соевые бобы),
|
29 |
+
- Панель ингаляционных аллергенов № 3 IgE (клещ - дерматофаг перинный, эпителий
|
30 |
+
кошки, эпителий собаки, плесневый гриб (Aspergillus fumigatus)),
|
31 |
+
- source_sentence: 12.4.6.04 Аллерген f27 - говядина, IgE (ImmunoCAP)
|
32 |
+
sentences:
|
33 |
+
- Панель ингаляционных аллергенов № 3 IgE (клещ - дерматофаг перинный, эпителий
|
34 |
+
кошки, эпителий собаки, плесневый гриб (Aspergillus fumigatus)),
|
35 |
+
- Панель аллергенов животных/перья птиц/ № 71 IgE (перо гуся, перо курицы, перо
|
36 |
+
утки, перо индюка),
|
37 |
+
- Панель ингаляционных аллергенов № 6 IgE (плесневый гриб (Cladosporium herbarum),
|
38 |
+
тимофеевка, плесневый гриб (Alternaria tenuis), береза, полынь обыкновенная),
|
39 |
+
- source_sentence: Микробиологическое исследование биосубстатов на микрофлору (отделяемое
|
40 |
+
зева, носа, глаз, ушей, гениталий, ран,мокрота) с постановкой чувствительности
|
41 |
+
[Мартьянова]
|
42 |
+
sentences:
|
43 |
+
- Панель ингаляционных аллергенов № 9 IgE (эпителий кошки, перхоть собаки, овсяница
|
44 |
+
луговая, плесневый гриб (Alternaria tenuis), подорожник),
|
45 |
+
- Панель аллергенов плесени № 1 IgE (penicillium notatum, cladosporium herbarum,
|
46 |
+
aspergillus fumigatus, candida albicans, alternaria tenuis),
|
47 |
+
- Посев отделяемого верхних дыхательных путей на микрофлору, определение чувствительности
|
48 |
+
к антимикробным препаратам (одна локализация) (Upper Respiratory Culture. Bacteria
|
49 |
+
Identification and Antibiotic Susceptibility Testing)*
|
50 |
+
- source_sentence: НЕТ ДО 20.04!!!!!!!! 12.01.16 Аллергокомпонент f77 - бета-лактоглобулин
|
51 |
+
nBos d 5, IgE (ImmunoCAP)
|
52 |
+
sentences:
|
53 |
+
- Ультразвуковое исследование плода
|
54 |
+
- Панель аллергенов животных № 70 IgE (эпителий морской свинки, эпителий кролика,
|
55 |
+
хомяк, крыса, мышь),
|
56 |
+
- Панель пищевых аллергенов № 15 IgE (апельсин, банан, яблоко, персик),
|
57 |
+
---
|
58 |
+
|
59 |
+
# SentenceTransformer based on ai-forever/ruRoberta-large
|
60 |
+
|
61 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
62 |
+
|
63 |
+
## Model Details
|
64 |
+
|
65 |
+
### Model Description
|
66 |
+
- **Model Type:** Sentence Transformer
|
67 |
+
- **Base model:** [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) <!-- at revision 5192d064ca6ac67c14c40e017ce41612e010f05f -->
|
68 |
+
- **Maximum Sequence Length:** 514 tokens
|
69 |
+
- **Output Dimensionality:** 1024 tokens
|
70 |
+
- **Similarity Function:** Cosine Similarity
|
71 |
+
<!-- - **Training Dataset:** Unknown -->
|
72 |
+
<!-- - **Language:** Unknown -->
|
73 |
+
<!-- - **License:** Unknown -->
|
74 |
+
|
75 |
+
### Model Sources
|
76 |
+
|
77 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
78 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
79 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
80 |
+
|
81 |
+
### Full Model Architecture
|
82 |
+
|
83 |
+
```
|
84 |
+
SentenceTransformer(
|
85 |
+
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
|
86 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Usage
|
91 |
+
|
92 |
+
### Direct Usage (Sentence Transformers)
|
93 |
+
|
94 |
+
First install the Sentence Transformers library:
|
95 |
+
|
96 |
+
```bash
|
97 |
+
pip install -U sentence-transformers
|
98 |
+
```
|
99 |
+
|
100 |
+
Then you can load this model and run inference.
|
101 |
+
```python
|
102 |
+
from sentence_transformers import SentenceTransformer
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
106 |
+
# Run inference
|
107 |
+
sentences = [
|
108 |
+
'НЕТ ДО 20.04!!!!!!!! 12.01.16 Аллергокомпонент f77 - бета-лактоглобулин nBos d 5, IgE (ImmunoCAP)',
|
109 |
+
'Панель аллергенов животных № 70 IgE (эпителий морской свинки, эпителий кролика, хомяк, крыса, мышь),',
|
110 |
+
'Ультразвуковое исследование плода',
|
111 |
+
]
|
112 |
+
embeddings = model.encode(sentences)
|
113 |
+
print(embeddings.shape)
|
114 |
+
# [3, 1024]
|
115 |
+
|
116 |
+
# Get the similarity scores for the embeddings
|
117 |
+
similarities = model.similarity(embeddings, embeddings)
|
118 |
+
print(similarities.shape)
|
119 |
+
# [3, 3]
|
120 |
+
```
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Direct Usage (Transformers)
|
124 |
+
|
125 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
126 |
+
|
127 |
+
</details>
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Downstream Usage (Sentence Transformers)
|
132 |
+
|
133 |
+
You can finetune this model on your own dataset.
|
134 |
+
|
135 |
+
<details><summary>Click to expand</summary>
|
136 |
+
|
137 |
+
</details>
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Out-of-Scope Use
|
142 |
+
|
143 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
## Bias, Risks and Limitations
|
148 |
+
|
149 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Recommendations
|
154 |
+
|
155 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
156 |
+
-->
|
157 |
+
|
158 |
+
## Training Details
|
159 |
+
|
160 |
+
### Training Dataset
|
161 |
+
|
162 |
+
#### Unnamed Dataset
|
163 |
+
|
164 |
+
|
165 |
+
* Size: 19,383 training samples
|
166 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
167 |
+
* Approximate statistics based on the first 1000 samples:
|
168 |
+
| | sentence_0 | sentence_1 |
|
169 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
170 |
+
| type | string | string |
|
171 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 30.0 tokens</li><li>max: 121 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 30.73 tokens</li><li>max: 105 tokens</li></ul> |
|
172 |
+
* Samples:
|
173 |
+
| sentence_0 | sentence_1 |
|
174 |
+
|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
|
175 |
+
| <code>Ингибитор VIII фактора</code> | <code>Исследование уровня антигена фактора Виллебранда</code> |
|
176 |
+
| <code>13.01.02 Антитела к экстрагируемому нуклеарному АГ (ЭНА/ENA-скрин), сыворотка крови</code> | <code>Антитела к экстрагируемому ядерному антигену, кач.</code> |
|
177 |
+
| <code>Нет 12.4.092 Аллерген f203 - фисташковые орехи, IgE</code> | <code>Панель аллергенов деревьев № 2 IgE (клен ясенелистный, тополь, вяз, дуб, пекан),</code> |
|
178 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
179 |
+
```json
|
180 |
+
{
|
181 |
+
"scale": 20.0,
|
182 |
+
"similarity_fct": "cos_sim"
|
183 |
+
}
|
184 |
+
```
|
185 |
+
|
186 |
+
### Training Hyperparameters
|
187 |
+
#### Non-Default Hyperparameters
|
188 |
+
|
189 |
+
- `per_device_train_batch_size`: 4
|
190 |
+
- `per_device_eval_batch_size`: 4
|
191 |
+
- `num_train_epochs`: 11
|
192 |
+
- `multi_dataset_batch_sampler`: round_robin
|
193 |
+
|
194 |
+
#### All Hyperparameters
|
195 |
+
<details><summary>Click to expand</summary>
|
196 |
+
|
197 |
+
- `overwrite_output_dir`: False
|
198 |
+
- `do_predict`: False
|
199 |
+
- `eval_strategy`: no
|
200 |
+
- `prediction_loss_only`: True
|
201 |
+
- `per_device_train_batch_size`: 4
|
202 |
+
- `per_device_eval_batch_size`: 4
|
203 |
+
- `per_gpu_train_batch_size`: None
|
204 |
+
- `per_gpu_eval_batch_size`: None
|
205 |
+
- `gradient_accumulation_steps`: 1
|
206 |
+
- `eval_accumulation_steps`: None
|
207 |
+
- `learning_rate`: 5e-05
|
208 |
+
- `weight_decay`: 0.0
|
209 |
+
- `adam_beta1`: 0.9
|
210 |
+
- `adam_beta2`: 0.999
|
211 |
+
- `adam_epsilon`: 1e-08
|
212 |
+
- `max_grad_norm`: 1
|
213 |
+
- `num_train_epochs`: 11
|
214 |
+
- `max_steps`: -1
|
215 |
+
- `lr_scheduler_type`: linear
|
216 |
+
- `lr_scheduler_kwargs`: {}
|
217 |
+
- `warmup_ratio`: 0.0
|
218 |
+
- `warmup_steps`: 0
|
219 |
+
- `log_level`: passive
|
220 |
+
- `log_level_replica`: warning
|
221 |
+
- `log_on_each_node`: True
|
222 |
+
- `logging_nan_inf_filter`: True
|
223 |
+
- `save_safetensors`: True
|
224 |
+
- `save_on_each_node`: False
|
225 |
+
- `save_only_model`: False
|
226 |
+
- `restore_callback_states_from_checkpoint`: False
|
227 |
+
- `no_cuda`: False
|
228 |
+
- `use_cpu`: False
|
229 |
+
- `use_mps_device`: False
|
230 |
+
- `seed`: 42
|
231 |
+
- `data_seed`: None
|
232 |
+
- `jit_mode_eval`: False
|
233 |
+
- `use_ipex`: False
|
234 |
+
- `bf16`: False
|
235 |
+
- `fp16`: False
|
236 |
+
- `fp16_opt_level`: O1
|
237 |
+
- `half_precision_backend`: auto
|
238 |
+
- `bf16_full_eval`: False
|
239 |
+
- `fp16_full_eval`: False
|
240 |
+
- `tf32`: None
|
241 |
+
- `local_rank`: 0
|
242 |
+
- `ddp_backend`: None
|
243 |
+
- `tpu_num_cores`: None
|
244 |
+
- `tpu_metrics_debug`: False
|
245 |
+
- `debug`: []
|
246 |
+
- `dataloader_drop_last`: False
|
247 |
+
- `dataloader_num_workers`: 0
|
248 |
+
- `dataloader_prefetch_factor`: None
|
249 |
+
- `past_index`: -1
|
250 |
+
- `disable_tqdm`: False
|
251 |
+
- `remove_unused_columns`: True
|
252 |
+
- `label_names`: None
|
253 |
+
- `load_best_model_at_end`: False
|
254 |
+
- `ignore_data_skip`: False
|
255 |
+
- `fsdp`: []
|
256 |
+
- `fsdp_min_num_params`: 0
|
257 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
258 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
259 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
260 |
+
- `deepspeed`: None
|
261 |
+
- `label_smoothing_factor`: 0.0
|
262 |
+
- `optim`: adamw_torch
|
263 |
+
- `optim_args`: None
|
264 |
+
- `adafactor`: False
|
265 |
+
- `group_by_length`: False
|
266 |
+
- `length_column_name`: length
|
267 |
+
- `ddp_find_unused_parameters`: None
|
268 |
+
- `ddp_bucket_cap_mb`: None
|
269 |
+
- `ddp_broadcast_buffers`: False
|
270 |
+
- `dataloader_pin_memory`: True
|
271 |
+
- `dataloader_persistent_workers`: False
|
272 |
+
- `skip_memory_metrics`: True
|
273 |
+
- `use_legacy_prediction_loop`: False
|
274 |
+
- `push_to_hub`: False
|
275 |
+
- `resume_from_checkpoint`: None
|
276 |
+
- `hub_model_id`: None
|
277 |
+
- `hub_strategy`: every_save
|
278 |
+
- `hub_private_repo`: False
|
279 |
+
- `hub_always_push`: False
|
280 |
+
- `gradient_checkpointing`: False
|
281 |
+
- `gradient_checkpointing_kwargs`: None
|
282 |
+
- `include_inputs_for_metrics`: False
|
283 |
+
- `eval_do_concat_batches`: True
|
284 |
+
- `fp16_backend`: auto
|
285 |
+
- `push_to_hub_model_id`: None
|
286 |
+
- `push_to_hub_organization`: None
|
287 |
+
- `mp_parameters`:
|
288 |
+
- `auto_find_batch_size`: False
|
289 |
+
- `full_determinism`: False
|
290 |
+
- `torchdynamo`: None
|
291 |
+
- `ray_scope`: last
|
292 |
+
- `ddp_timeout`: 1800
|
293 |
+
- `torch_compile`: False
|
294 |
+
- `torch_compile_backend`: None
|
295 |
+
- `torch_compile_mode`: None
|
296 |
+
- `dispatch_batches`: None
|
297 |
+
- `split_batches`: None
|
298 |
+
- `include_tokens_per_second`: False
|
299 |
+
- `include_num_input_tokens_seen`: False
|
300 |
+
- `neftune_noise_alpha`: None
|
301 |
+
- `optim_target_modules`: None
|
302 |
+
- `batch_eval_metrics`: False
|
303 |
+
- `batch_sampler`: batch_sampler
|
304 |
+
- `multi_dataset_batch_sampler`: round_robin
|
305 |
+
|
306 |
+
</details>
|
307 |
+
|
308 |
+
### Training Logs
|
309 |
+
<details><summary>Click to expand</summary>
|
310 |
+
|
311 |
+
| Epoch | Step | Training Loss |
|
312 |
+
|:-------:|:-----:|:-------------:|
|
313 |
+
| 0.1032 | 500 | 0.7937 |
|
314 |
+
| 0.2064 | 1000 | 0.5179 |
|
315 |
+
| 0.3095 | 1500 | 0.5271 |
|
316 |
+
| 0.4127 | 2000 | 0.5696 |
|
317 |
+
| 0.5159 | 2500 | 0.5232 |
|
318 |
+
| 0.6191 | 3000 | 0.6401 |
|
319 |
+
| 0.7222 | 3500 | 0.6337 |
|
320 |
+
| 0.8254 | 4000 | 0.9436 |
|
321 |
+
| 0.9286 | 4500 | 1.3872 |
|
322 |
+
| 1.0318 | 5000 | 1.3834 |
|
323 |
+
| 1.1350 | 5500 | 0.9831 |
|
324 |
+
| 1.2381 | 6000 | 1.0122 |
|
325 |
+
| 1.3413 | 6500 | 1.3708 |
|
326 |
+
| 1.4445 | 7000 | 1.3794 |
|
327 |
+
| 1.5477 | 7500 | 1.3784 |
|
328 |
+
| 1.6508 | 8000 | 1.3856 |
|
329 |
+
| 1.7540 | 8500 | 1.3809 |
|
330 |
+
| 1.8572 | 9000 | 1.3776 |
|
331 |
+
| 1.9604 | 9500 | 1.0041 |
|
332 |
+
| 2.0636 | 10000 | 0.8559 |
|
333 |
+
| 2.1667 | 10500 | 0.8531 |
|
334 |
+
| 2.2699 | 11000 | 0.8446 |
|
335 |
+
| 2.3731 | 11500 | 0.8487 |
|
336 |
+
| 2.4763 | 12000 | 1.0807 |
|
337 |
+
| 2.5794 | 12500 | 1.3792 |
|
338 |
+
| 2.6826 | 13000 | 1.3923 |
|
339 |
+
| 2.7858 | 13500 | 1.3787 |
|
340 |
+
| 2.8890 | 14000 | 1.3803 |
|
341 |
+
| 2.9922 | 14500 | 1.3641 |
|
342 |
+
| 3.0953 | 15000 | 1.3725 |
|
343 |
+
| 3.1985 | 15500 | 1.3624 |
|
344 |
+
| 3.3017 | 16000 | 1.3659 |
|
345 |
+
| 3.4049 | 16500 | 1.3609 |
|
346 |
+
| 3.5080 | 17000 | 1.3496 |
|
347 |
+
| 3.6112 | 17500 | 1.3639 |
|
348 |
+
| 3.7144 | 18000 | 1.3487 |
|
349 |
+
| 3.8176 | 18500 | 1.3463 |
|
350 |
+
| 3.9208 | 19000 | 1.336 |
|
351 |
+
| 4.0239 | 19500 | 1.3451 |
|
352 |
+
| 4.1271 | 20000 | 1.3363 |
|
353 |
+
| 4.2303 | 20500 | 1.3411 |
|
354 |
+
| 4.3335 | 21000 | 1.3376 |
|
355 |
+
| 4.4366 | 21500 | 1.3294 |
|
356 |
+
| 4.5398 | 22000 | 1.3281 |
|
357 |
+
| 4.6430 | 22500 | 1.3323 |
|
358 |
+
| 4.7462 | 23000 | 1.3411 |
|
359 |
+
| 4.8494 | 23500 | 1.3162 |
|
360 |
+
| 4.9525 | 24000 | 1.3204 |
|
361 |
+
| 5.0557 | 24500 | 1.324 |
|
362 |
+
| 5.1589 | 25000 | 1.3253 |
|
363 |
+
| 5.2621 | 25500 | 1.3283 |
|
364 |
+
| 5.3652 | 26000 | 1.3298 |
|
365 |
+
| 5.4684 | 26500 | 1.3144 |
|
366 |
+
| 5.5716 | 27000 | 1.3162 |
|
367 |
+
| 5.6748 | 27500 | 1.3148 |
|
368 |
+
| 5.7780 | 28000 | 1.3254 |
|
369 |
+
| 5.8811 | 28500 | 1.319 |
|
370 |
+
| 5.9843 | 29000 | 1.3134 |
|
371 |
+
| 6.0875 | 29500 | 1.3184 |
|
372 |
+
| 6.1907 | 30000 | 1.3049 |
|
373 |
+
| 6.2939 | 30500 | 1.3167 |
|
374 |
+
| 6.3970 | 31000 | 1.3192 |
|
375 |
+
| 6.5002 | 31500 | 1.2926 |
|
376 |
+
| 6.6034 | 32000 | 1.3035 |
|
377 |
+
| 6.7066 | 32500 | 1.3117 |
|
378 |
+
| 6.8097 | 33000 | 1.3093 |
|
379 |
+
| 6.9129 | 33500 | 1.278 |
|
380 |
+
| 7.0161 | 34000 | 1.3143 |
|
381 |
+
| 7.1193 | 34500 | 1.3144 |
|
382 |
+
| 7.2225 | 35000 | 1.304 |
|
383 |
+
| 7.3256 | 35500 | 1.3066 |
|
384 |
+
| 7.4288 | 36000 | 1.2916 |
|
385 |
+
| 7.5320 | 36500 | 1.2943 |
|
386 |
+
| 7.6352 | 37000 | 1.2883 |
|
387 |
+
| 7.7383 | 37500 | 1.3014 |
|
388 |
+
| 7.8415 | 38000 | 1.3005 |
|
389 |
+
| 7.9447 | 38500 | 1.2699 |
|
390 |
+
| 8.0479 | 39000 | 1.3042 |
|
391 |
+
| 8.1511 | 39500 | 1.289 |
|
392 |
+
| 8.2542 | 40000 | 1.3012 |
|
393 |
+
| 8.3574 | 40500 | 1.3017 |
|
394 |
+
| 8.4606 | 41000 | 1.272 |
|
395 |
+
| 8.5638 | 41500 | 1.2939 |
|
396 |
+
| 8.6669 | 42000 | 1.2764 |
|
397 |
+
| 8.7701 | 42500 | 1.2908 |
|
398 |
+
| 8.8733 | 43000 | 1.2619 |
|
399 |
+
| 8.9765 | 43500 | 1.2791 |
|
400 |
+
| 9.0797 | 44000 | 1.2722 |
|
401 |
+
| 9.1828 | 44500 | 1.278 |
|
402 |
+
| 9.2860 | 45000 | 1.2911 |
|
403 |
+
| 9.3892 | 45500 | 1.2791 |
|
404 |
+
| 9.4924 | 46000 | 1.2791 |
|
405 |
+
| 9.5955 | 46500 | 1.2782 |
|
406 |
+
| 9.6987 | 47000 | 1.2789 |
|
407 |
+
| 9.8019 | 47500 | 1.2858 |
|
408 |
+
| 9.9051 | 48000 | 1.2601 |
|
409 |
+
| 10.0083 | 48500 | 1.29 |
|
410 |
+
| 10.1114 | 49000 | 1.276 |
|
411 |
+
| 10.2146 | 49500 | 1.2801 |
|
412 |
+
| 10.3178 | 50000 | 1.2853 |
|
413 |
+
| 10.4210 | 50500 | 1.2655 |
|
414 |
+
| 10.5241 | 51000 | 1.271 |
|
415 |
+
| 10.6273 | 51500 | 1.2633 |
|
416 |
+
| 10.7305 | 52000 | 1.2565 |
|
417 |
+
| 10.8337 | 52500 | 1.2755 |
|
418 |
+
| 10.9369 | 53000 | 1.2567 |
|
419 |
+
|
420 |
+
</details>
|
421 |
+
|
422 |
+
### Framework Versions
|
423 |
+
- Python: 3.10.12
|
424 |
+
- Sentence Transformers: 3.0.1
|
425 |
+
- Transformers: 4.41.2
|
426 |
+
- PyTorch: 2.3.0+cu121
|
427 |
+
- Accelerate: 0.31.0
|
428 |
+
- Datasets: 2.20.0
|
429 |
+
- Tokenizers: 0.19.1
|
430 |
+
|
431 |
+
## Citation
|
432 |
+
|
433 |
+
### BibTeX
|
434 |
+
|
435 |
+
#### Sentence Transformers
|
436 |
+
```bibtex
|
437 |
+
@inproceedings{reimers-2019-sentence-bert,
|
438 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
439 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
440 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
441 |
+
month = "11",
|
442 |
+
year = "2019",
|
443 |
+
publisher = "Association for Computational Linguistics",
|
444 |
+
url = "https://arxiv.org/abs/1908.10084",
|
445 |
+
}
|
446 |
+
```
|
447 |
+
|
448 |
+
#### MultipleNegativesRankingLoss
|
449 |
+
```bibtex
|
450 |
+
@misc{henderson2017efficient,
|
451 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
452 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
453 |
+
year={2017},
|
454 |
+
eprint={1705.00652},
|
455 |
+
archivePrefix={arXiv},
|
456 |
+
primaryClass={cs.CL}
|
457 |
+
}
|
458 |
+
```
|
459 |
+
|
460 |
+
<!--
|
461 |
+
## Glossary
|
462 |
+
|
463 |
+
*Clearly define terms in order to be accessible across audiences.*
|
464 |
+
-->
|
465 |
+
|
466 |
+
<!--
|
467 |
+
## Model Card Authors
|
468 |
+
|
469 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
470 |
+
-->
|
471 |
+
|
472 |
+
<!--
|
473 |
+
## Model Card Contact
|
474 |
+
|
475 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
476 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ai-forever/ruRoberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 1024,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 4096,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 16,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 50265
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 514,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "<unk>"
|
57 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|