--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-test_arm-colab-CV16.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: hy-AM split: test args: hy-AM metrics: - name: Wer type: wer value: 0.1774802773129333 --- # w2v-bert-2.0-test_arm-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2066 - Wer: 0.1775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1471 | 1.6 | 300 | 0.2062 | 0.2229 | | 0.1437 | 3.2 | 600 | 0.2216 | 0.2375 | | 0.1051 | 4.8 | 900 | 0.1969 | 0.2127 | | 0.0594 | 6.4 | 1200 | 0.1882 | 0.1839 | | 0.0297 | 8.0 | 1500 | 0.1951 | 0.1825 | | 0.0115 | 9.6 | 1800 | 0.2066 | 0.1775 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.1