nategro commited on
Commit
19ea40f
1 Parent(s): 961a511

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -8,7 +8,9 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -28,7 +30,7 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -51,8 +53,8 @@ def cls_pooling(model_output, attention_mask):
51
  sentences = ['This is an example sentence', 'Each sentence is converted']
52
 
53
  # Load model from HuggingFace Hub
54
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
55
- model = AutoModel.from_pretrained('{MODEL_NAME}')
56
 
57
  # Tokenize sentences
58
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
8
 
9
  ---
10
 
11
+ # contradiction-psb-lds
12
+
13
+ A model for the identification of contradiction sentences in patents using PatentSBERTa
14
 
15
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
16
 
 
30
  from sentence_transformers import SentenceTransformer
31
  sentences = ["This is an example sentence", "Each sentence is converted"]
32
 
33
+ model = SentenceTransformer('nategro/contradiction-psb-lds')
34
  embeddings = model.encode(sentences)
35
  print(embeddings)
36
  ```
 
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('nategro/contradiction-psb-lds')
57
+ model = AutoModel.from_pretrained('nategro/contradiction-psb-lds')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')