Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,9 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
|
|
|
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -28,7 +30,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -51,8 +53,8 @@ def cls_pooling(model_output, attention_mask):
|
|
51 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
52 |
|
53 |
# Load model from HuggingFace Hub
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
55 |
-
model = AutoModel.from_pretrained('
|
56 |
|
57 |
# Tokenize sentences
|
58 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# contradiction-psb-lds
|
12 |
+
|
13 |
+
A model for the identification of contradiction sentences in patents using PatentSBERTa
|
14 |
|
15 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
16 |
|
|
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
32 |
|
33 |
+
model = SentenceTransformer('nategro/contradiction-psb-lds')
|
34 |
embeddings = model.encode(sentences)
|
35 |
print(embeddings)
|
36 |
```
|
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('nategro/contradiction-psb-lds')
|
57 |
+
model = AutoModel.from_pretrained('nategro/contradiction-psb-lds')
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|