File size: 3,196 Bytes
1a66821
 
 
 
443daeb
9b17556
1a66821
 
 
 
16ed1d7
1a66821
 
 
 
 
 
8991abd
1a66821
 
16ed1d7
6a91db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a66821
 
 
 
 
884a2f8
1a66821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
tags:
- generated_from_trainer
- image-classification
- pytorch
datasets:
- food101
metrics:
- accuracy
model-index:
- name: food101_outputs
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: food-101
      type: food101
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8912871287128713
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: food101
      type: food101
      config: default
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7872475247524753
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.8037731109218832
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.7872475247524753
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.8037731109218832
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.7872475247524753
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.7872475247524753
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.7872475247524753
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.7898702754048251
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.7872475247524753
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.789870275404825
      verified: true
    - name: loss
      type: loss
      value: 0.8927117586135864
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nateraw/food

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the nateraw/food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4501
- Accuracy: 0.8913

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8271        | 1.0   | 592  | 0.6070          | 0.8562   |
| 0.4376        | 2.0   | 1184 | 0.4947          | 0.8691   |
| 0.2089        | 3.0   | 1776 | 0.4876          | 0.8747   |
| 0.0882        | 4.0   | 2368 | 0.4639          | 0.8857   |
| 0.0452        | 5.0   | 2960 | 0.4501          | 0.8913   |


### Framework versions

- Transformers 4.9.0.dev0
- Pytorch 1.9.0+cu102
- Datasets 1.9.1.dev0
- Tokenizers 0.10.3