File size: 1,957 Bytes
1a66821
 
 
 
443daeb
9b17556
1a66821
 
 
 
16ed1d7
1a66821
 
 
 
 
 
8991abd
1a66821
 
16ed1d7
 
 
 
1a66821
 
 
 
 
884a2f8
1a66821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
- image-classification
- pytorch
datasets:
- food101
metrics:
- accuracy
model-index:
- name: food101_outputs
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: food-101
      type: food101
      args: default
    metrics:
      - name: Accuracy
        type: accuracy
        value: 0.8912871287128713
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nateraw/food

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the nateraw/food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4501
- Accuracy: 0.8913

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8271        | 1.0   | 592  | 0.6070          | 0.8562   |
| 0.4376        | 2.0   | 1184 | 0.4947          | 0.8691   |
| 0.2089        | 3.0   | 1776 | 0.4876          | 0.8747   |
| 0.0882        | 4.0   | 2368 | 0.4639          | 0.8857   |
| 0.0452        | 5.0   | 2960 | 0.4501          | 0.8913   |


### Framework versions

- Transformers 4.9.0.dev0
- Pytorch 1.9.0+cu102
- Datasets 1.9.1.dev0
- Tokenizers 0.10.3