--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo-v3 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 - task: type: image-classification name: Image Classification dataset: name: beans type: beans config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9453125 verified: true - name: Precision Macro type: precision value: 0.9456848691108476 verified: true - name: Precision Micro type: precision value: 0.9453125 verified: true - name: Precision Weighted type: precision value: 0.9454422181972876 verified: true - name: Recall Macro type: recall value: 0.945736434108527 verified: true - name: Recall Micro type: recall value: 0.9453125 verified: true - name: Recall Weighted type: recall value: 0.9453125 verified: true - name: F1 Macro type: f1 value: 0.9454489841913777 verified: true - name: F1 Micro type: f1 value: 0.9453125 verified: true - name: F1 Weighted type: f1 value: 0.9451147161450787 verified: true - name: loss type: loss value: 0.16277241706848145 verified: true --- # vit-base-beans-demo-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0645 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0397 | 1.54 | 100 | 0.0645 | 0.9850 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3