File size: 3,417 Bytes
ecf467c
 
 
 
12d5b16
ecf467c
 
 
 
4cb08d1
 
 
 
 
 
 
ecf467c
 
 
 
 
 
 
 
 
 
 
 
 
 
9cbf311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecf467c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
tags:
- generated_from_trainer
- image-classification
datasets:
- beans
metrics:
- accuracy
widget:
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg
  example_title: Healthy
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg
  example_title: Angular Leaf Spot
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg
  example_title: Bean Rust
model-index:
- name: vit-base-beans
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: beans
      type: beans
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9774436090225563
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: beans
      type: beans
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9453125
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9453325082933705
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.9453125
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9452605321507761
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.945736434108527
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.9453125
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.9453125
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9451827242524917
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.9453125
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.944936150332226
      verified: true
    - name: loss
      type: loss
      value: 0.26030588150024414
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-beans

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0942
- Accuracy: 0.9774

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2809        | 1.0   | 130  | 0.2287          | 0.9699   |
| 0.1097        | 2.0   | 260  | 0.1676          | 0.9624   |
| 0.1027        | 3.0   | 390  | 0.0942          | 0.9774   |
| 0.0923        | 4.0   | 520  | 0.1104          | 0.9699   |
| 0.1726        | 5.0   | 650  | 0.1030          | 0.9699   |


### Framework versions

- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3