--- language: en license: apache-2.0 tags: - generated_from_trainer - image-classification datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg example_title: Angular Leaf Spot - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit-base-beans results: - task: type: image-classification name: Image Classification dataset: type: beans name: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0942 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2809 | 1.0 | 130 | 0.2287 | 0.9699 | | 0.1097 | 2.0 | 260 | 0.1676 | 0.9624 | | 0.1027 | 3.0 | 390 | 0.0942 | 0.9774 | | 0.0923 | 4.0 | 520 | 0.1104 | 0.9699 | | 0.1726 | 5.0 | 650 | 0.1030 | 0.9699 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3