--- license: apache-2.0 tags: - generated_from_trainer - image-classification datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: vit-base-cats-vs-dogs results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs args: default metrics: - name: Accuracy type: accuracy value: 0.9934510250569476 --- # vit-base-cats-vs-dogs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0202 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.064 | 1.0 | 311 | 0.0483 | 0.9849 | | 0.0622 | 2.0 | 622 | 0.0275 | 0.9903 | | 0.0366 | 3.0 | 933 | 0.0262 | 0.9917 | | 0.0294 | 4.0 | 1244 | 0.0219 | 0.9932 | | 0.0161 | 5.0 | 1555 | 0.0202 | 0.9935 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3