--- license: mit pipeline_tag: image-text-to-text --- # InternVL2-8B-abliterated ## Introduction Abliterated version of [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B), one of the most powerful multimodal large language models of its size class. Weight orthogonalization has been applied to inhibit the model's ability to express refusals while preserving the model's text and multimodal capabilities. Nonetheless, the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety. ## Quickstart ```python import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float("inf") best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert("RGB") transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = "natong19/InternVL2-8B-abliterated" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image("./examples/image1.jpg", max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=False) # pure-text conversation (纯文本对话) question = "Hello, who are you?" response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f"User: {question}\nAssistant: {response}") question = "Can you tell me a story?" response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) print(f"User: {question}\nAssistant: {response}") # single-image multi-round conversation (单图多轮对话) question = "\nPlease describe the image in detail." response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f"User: {question}\nAssistant: {response}") question = "Please write a poem according to the image." response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f"User: {question}\nAssistant: {response}") # multi-image multi-round conversation, separate images (多图多轮对话,独立图像) pixel_values1 = load_image("./examples/image1.jpg", max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image("./examples/image2.jpg", max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = "Image-1: \nImage-2: \nDescribe the two images in detail." response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f"User: {question}\nAssistant: {response}") question = "What are the similarities and differences between these two images." response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f"User: {question}\nAssistant: {response}") ``` ## Evaluation Evaluation framework: lm-evaluation-harness 0.4.2 and lmms-eval 0.2.1 | Datasets | InternVL2-8B | InternVL2-8B-abliterated | | :--- | :---: | :---: | | _**Text benchmarks**_ | | ARC (25-shot) | 59.1 | 58.5 | | MMLU (5-shot) | 71.4 | 70.8 | | TruthfulQA (0-shot) | 50.8 | 49.1 | | Winogrande (5-shot) | 81.8 | 81.1 | | _**Multimodal benchmarks**_ | | AI2D (lite) | 80.2 | 80.0 | | GQA (lite) | 74.0 | 74.6 | | MMBench (EN dev, lite) |85.6 | 84.8 | | MMMU (val) | 48.0 | 48.0 | | OCRBench | 76.5 | 77.3 | | VQAv2 (val, lite) | 76.4 | 76.2 |