DongHyunKim
commited on
Commit
•
0263b4f
1
Parent(s):
a6abb1f
Delete rdnet_base.nv_1k.md
Browse files- rdnet_base.nv_1k.md +0 -126
rdnet_base.nv_1k.md
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- image-classification
|
4 |
-
- timm
|
5 |
-
- rdnet
|
6 |
-
library_name: timm
|
7 |
-
datasets:
|
8 |
-
- imagenet-1k
|
9 |
-
---
|
10 |
-
# Model card for rdnet_base.nv_in1k
|
11 |
-
|
12 |
-
A RDNet image classification model. Trained on ImageNet-1k, original torchvision weights.
|
13 |
-
|
14 |
-
## Model Details
|
15 |
-
- **Model Type:** Image classification / feature backbone
|
16 |
-
- **Model Stats:**
|
17 |
-
- Imagenet-1k validation top-1 accuracy: 84.4%
|
18 |
-
- Params (M): 87
|
19 |
-
- GMACs: 15.4
|
20 |
-
- Image size: 224 x 224
|
21 |
-
- **Papers:**
|
22 |
-
- DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs: https://arxiv.org/abs/2403.19588
|
23 |
-
- **Dataset:** ImageNet-1k
|
24 |
-
|
25 |
-
## Model Usage
|
26 |
-
### Image Classification
|
27 |
-
```python
|
28 |
-
from urllib.request import urlopen
|
29 |
-
from PIL import Image
|
30 |
-
import timm
|
31 |
-
import torch
|
32 |
-
|
33 |
-
img = Image.open(urlopen(
|
34 |
-
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
35 |
-
))
|
36 |
-
|
37 |
-
model = timm.create_model('rdnet_base.nv_in1k', pretrained=True)
|
38 |
-
model = model.eval()
|
39 |
-
|
40 |
-
# get model specific transforms (normalization, resize)
|
41 |
-
data_config = timm.data.resolve_model_data_config(model)
|
42 |
-
transforms = timm.data.create_transform(**data_config, is_training=False)
|
43 |
-
|
44 |
-
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
45 |
-
|
46 |
-
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
47 |
-
```
|
48 |
-
|
49 |
-
### Feature Map Extraction
|
50 |
-
```python
|
51 |
-
from urllib.request import urlopen
|
52 |
-
from PIL import Image
|
53 |
-
import timm
|
54 |
-
|
55 |
-
img = Image.open(urlopen(
|
56 |
-
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
57 |
-
))
|
58 |
-
|
59 |
-
model = timm.create_model(
|
60 |
-
'rdnet_base.nv_in1k',
|
61 |
-
pretrained=True,
|
62 |
-
features_only=True,
|
63 |
-
)
|
64 |
-
model = model.eval()
|
65 |
-
|
66 |
-
# get model specific transforms (normalization, resize)
|
67 |
-
data_config = timm.data.resolve_model_data_config(model)
|
68 |
-
transforms = timm.data.create_transform(**data_config, is_training=False)
|
69 |
-
|
70 |
-
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
71 |
-
|
72 |
-
for o in output:
|
73 |
-
# print shape of each feature map in output
|
74 |
-
# e.g.:
|
75 |
-
# torch.Size([1, 64, 224, 224])
|
76 |
-
# torch.Size([1, 128, 112, 112])
|
77 |
-
# torch.Size([1, 256, 56, 56])
|
78 |
-
# torch.Size([1, 512, 28, 28])
|
79 |
-
# torch.Size([1, 512, 14, 14])
|
80 |
-
# torch.Size([1, 512, 7, 7])
|
81 |
-
|
82 |
-
print(o.shape)
|
83 |
-
```
|
84 |
-
|
85 |
-
### Image Embeddings
|
86 |
-
```python
|
87 |
-
from urllib.request import urlopen
|
88 |
-
from PIL import Image
|
89 |
-
import timm
|
90 |
-
|
91 |
-
img = Image.open(urlopen(
|
92 |
-
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
93 |
-
))
|
94 |
-
|
95 |
-
model = timm.create_model(
|
96 |
-
'rdnet_base.nv_in1k',
|
97 |
-
pretrained=True,
|
98 |
-
num_classes=0, # remove classifier nn.Linear
|
99 |
-
)
|
100 |
-
model = model.eval()
|
101 |
-
|
102 |
-
# get model specific transforms (normalization, resize)
|
103 |
-
data_config = timm.data.resolve_model_data_config(model)
|
104 |
-
transforms = timm.data.create_transform(**data_config, is_training=False)
|
105 |
-
|
106 |
-
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
107 |
-
|
108 |
-
# or equivalently (without needing to set num_classes=0)
|
109 |
-
|
110 |
-
output = model.forward_features(transforms(img).unsqueeze(0))
|
111 |
-
# output is unpooled, a (1, 512, 7, 7) shaped tensor
|
112 |
-
|
113 |
-
output = model.forward_head(output, pre_logits=True)
|
114 |
-
# output is a (1, num_features) shaped tensor
|
115 |
-
```
|
116 |
-
|
117 |
-
### Citation
|
118 |
-
```
|
119 |
-
@misc{kim2024densenets,
|
120 |
-
title={DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs},
|
121 |
-
author={Donghyun Kim and Byeongho Heo and Dongyoon Han},
|
122 |
-
year={2024},
|
123 |
-
eprint={2403.19588},
|
124 |
-
archivePrefix={arXiv},
|
125 |
-
}
|
126 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|