File size: 1,881 Bytes
8991601 a3c4503 8991601 a3c4503 8991601 a3c4503 06e7259 a3c4503 f3904b3 a3c4503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- image-to-3d
- pytorch_model_hub_mixin
- model_hub_mixin
library_name: mast3r
repo_url: https://github.com/naver/mast3r
---
## Grounding Image Matching in 3D with MASt3R
```bibtex
@misc{mast3r_arxiv24,
title={Grounding Image Matching in 3D with MASt3R},
author={Vincent Leroy and Yohann Cabon and Jerome Revaud},
year={2024},
eprint={2406.09756},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{dust3r_cvpr24,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
booktitle = {CVPR},
year = {2024}
}
```
# License
The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/mast3r/blob/main/LICENSE) for more information.
For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0.
The mapfree dataset license in particular is very restrictive. For more information, check [CHECKPOINTS_NOTICE](https://github.com/naver/mast3r/blob/main/CHECKPOINTS_NOTICE).
# Model info
Gihub page: https://github.com/naver/mast3r/
| Modelname | Training resolutions | Head | Encoder | Decoder |
|-------------|----------------------|------|---------|---------|
| MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_nonmetric | 512x384, 512x336, 512x288, 512x256, 512x160 | CatMLP+DPT | ViT-L | ViT-B |
# How to use
First, [install mast3r](https://github.com/naver/mast3r?tab=readme-ov-file#installation).
To load the model:
```python
from mast3r.model import AsymmetricMASt3R
import torch
model = AsymmetricMASt3R.from_pretrained("naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_nonmetric")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
``` |