Upload modeling_cocom.py
Browse files- modeling_cocom.py +306 -0
modeling_cocom.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PreTrainedModel, PretrainedConfig, AutoModel
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
5 |
+
import os
|
6 |
+
|
7 |
+
def freeze_model(model):
|
8 |
+
for param in model.parameters():
|
9 |
+
param.requires_grad = False
|
10 |
+
|
11 |
+
|
12 |
+
class BERT_Compressor(torch.nn.Module):
|
13 |
+
def __init__(self, compr_model_name, compr_rate, compr_linear_type, decoder_hidden_size):
|
14 |
+
super().__init__()
|
15 |
+
# init model
|
16 |
+
self.model_name = compr_model_name # base model name of BERT; example: bert-base-ucased
|
17 |
+
self.model = AutoModel.from_pretrained(compr_model_name, torch_dtype=torch.bfloat16)
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(compr_model_name, use_fast=True)
|
19 |
+
self.compr_rate = compr_rate # compression rate
|
20 |
+
self.compressing_mode = compr_linear_type # linear layer type, could be either concat or mean.
|
21 |
+
|
22 |
+
if self.compressing_mode == 'concat': # default setting in paper
|
23 |
+
self.linear = torch.nn.Linear(self.model.config.hidden_size*self.compr_rate, decoder_hidden_size)
|
24 |
+
elif self.compressing_mode == 'mean':
|
25 |
+
self.linear = torch.nn.Linear(self.model.config.hidden_size, decoder_hidden_size)
|
26 |
+
self.linear = self.linear.bfloat16()
|
27 |
+
|
28 |
+
def forward(self, input_ids, attention_mask):
|
29 |
+
# compressing context using BERT
|
30 |
+
segment_compress_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
31 |
+
num_embs = math.ceil(input_ids.size(1) / self.compr_rate)
|
32 |
+
all_hidden_states_emb = list()
|
33 |
+
if self.compressing_mode == 'concat':
|
34 |
+
for segment_idx in range(num_embs):
|
35 |
+
start_idx = segment_idx * self.compr_rate
|
36 |
+
end_idx = (segment_idx + 1) * self.compr_rate
|
37 |
+
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
38 |
+
hidden_state_concat = torch.flatten(hidden_state, start_dim=1) #batch_size, hidden_state_dim * compression_rate
|
39 |
+
all_hidden_states_emb.append(hidden_state_concat)
|
40 |
+
elif self.compressing_mode == "mean":
|
41 |
+
for segment_idx in range(num_embs):
|
42 |
+
start_idx = segment_idx * self.compr_rate
|
43 |
+
end_idx = (segment_idx + 1) * self.compr_rate
|
44 |
+
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
45 |
+
# Apply mean pooling to get the final embedding for the segment
|
46 |
+
all_hidden_states_emb.append(hidden_state)
|
47 |
+
else:
|
48 |
+
raise NotImplementedError()
|
49 |
+
|
50 |
+
all_hidden_states_emb_cat = torch.stack(all_hidden_states_emb, dim=1)
|
51 |
+
transformed_embeds = self.linear(all_hidden_states_emb_cat)
|
52 |
+
|
53 |
+
|
54 |
+
if self.compressing_mode == "mean":
|
55 |
+
transformed_embeds = torch.mean(transformed_embeds, dim=2)
|
56 |
+
|
57 |
+
# dimention of transformed_embeds: (batch_size*generation_top_k, num_embs, decoder_hidden_size)
|
58 |
+
return transformed_embeds
|
59 |
+
|
60 |
+
class COCOMConfig(PretrainedConfig):
|
61 |
+
|
62 |
+
model_type = "COCOM"
|
63 |
+
def __init__(self,
|
64 |
+
decoder_model_name="meta-llama/Llama-2-7b-chat-hf",
|
65 |
+
quantization = 'no',
|
66 |
+
generation_top_k = 1,
|
67 |
+
sep = False,
|
68 |
+
compr_model_name = "bert-base-uncased",
|
69 |
+
compr_rate = 64,
|
70 |
+
compr_linear_type = 'concat',
|
71 |
+
lora = False,
|
72 |
+
training_form="both",
|
73 |
+
lora_r=16,
|
74 |
+
**kwargs):
|
75 |
+
super().__init__(**kwargs)
|
76 |
+
|
77 |
+
self.decoder_model_name = decoder_model_name # model name of decoder
|
78 |
+
self.quantization = quantization # quantization, could be no, int4, int8
|
79 |
+
self.generation_top_k = generation_top_k # top k for each query, for pretraining, set to 1
|
80 |
+
self.sep = sep # boolean type, whether to use sep token
|
81 |
+
self.compr_model_name = compr_model_name # model name of compressor
|
82 |
+
self.compr_rate = compr_rate # compression rate
|
83 |
+
self.compr_linear_type = compr_linear_type # linear layer type, could be either concat or mean
|
84 |
+
self.lora = lora # boolean type, whether to use lora trsining
|
85 |
+
self.training_form = training_form # training form, could be compressor: training only comprssor; both:
|
86 |
+
self.lora_r = lora_r # lora_r for lora training, we use 16 throughout the experiment.
|
87 |
+
|
88 |
+
class COCOM(PreTrainedModel):
|
89 |
+
config_class = COCOMConfig
|
90 |
+
def __init__(self, cfg):
|
91 |
+
super().__init__(cfg)
|
92 |
+
# define models
|
93 |
+
# model could be loaded in three quantization modes: no, int4, int8
|
94 |
+
if cfg.quantization == "no":
|
95 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(
|
96 |
+
cfg.decoder_model_name,
|
97 |
+
torch_dtype=torch.bfloat16,
|
98 |
+
attn_implementation="flash_attention_2",
|
99 |
+
low_cpu_mem_usage = True,
|
100 |
+
)
|
101 |
+
elif cfg.quantization == "int4":
|
102 |
+
quant_config = BitsAndBytesConfig(
|
103 |
+
load_in_4bit=True,
|
104 |
+
bnb_4bit_quant_type='nf4',
|
105 |
+
bnb_4bit_compute_dtype='bfloat16',
|
106 |
+
low_cpu_mem_usage = True,
|
107 |
+
)
|
108 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(
|
109 |
+
cfg.decoder_model_name,
|
110 |
+
quantization_config=quant_config,
|
111 |
+
attn_implementation="flash_attention_2",
|
112 |
+
torch_dtype=torch.bfloat16,
|
113 |
+
resume_download=True,
|
114 |
+
low_cpu_mem_usage = True,
|
115 |
+
trust_remote_code=True,
|
116 |
+
)
|
117 |
+
elif cfg.quantization == "int8":
|
118 |
+
quant_config = BitsAndBytesConfig(
|
119 |
+
load_in_8bit=True,
|
120 |
+
llm_int8_enable_fp32_cpu_offload=True,
|
121 |
+
bnb_4bit_compute_dtype='bfloat16',
|
122 |
+
low_cpu_mem_usage = True,
|
123 |
+
)
|
124 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(
|
125 |
+
cfg.decoder_model_name,
|
126 |
+
quantization_config=quant_config,
|
127 |
+
attn_implementation="flash_attention_2",
|
128 |
+
torch_dtype=torch.bfloat16,
|
129 |
+
resume_download=True,
|
130 |
+
low_cpu_mem_usage = True,
|
131 |
+
trust_remote_code=True,
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise NotImplementedError()
|
135 |
+
|
136 |
+
# when compr_model_name is not set, then means using a decoder-based compressor, otherwise a bert based compressor
|
137 |
+
if cfg.compr_model_name is not None:
|
138 |
+
# case bert based compressor
|
139 |
+
self.compr = BERT_Compressor(cfg.compr_model_name, cfg.compr_rate, cfg.compr_linear_type, self.decoder.config.hidden_size)
|
140 |
+
else:
|
141 |
+
# case decoder based compressor
|
142 |
+
self.compr = None
|
143 |
+
|
144 |
+
# set lora adaptors
|
145 |
+
if cfg.lora:
|
146 |
+
peft_config = LoraConfig(
|
147 |
+
task_type="CAUSAL_LM",
|
148 |
+
r=cfg.lora_r,
|
149 |
+
lora_alpha=2* cfg.lora_r,
|
150 |
+
target_modules='all-linear',
|
151 |
+
lora_dropout=0.1,
|
152 |
+
)
|
153 |
+
self.decoder = get_peft_model(self.decoder, peft_config)
|
154 |
+
self.decoder.print_trainable_parameters()
|
155 |
+
|
156 |
+
# for training_form=compressor, then freeze the decoder for BERT-based
|
157 |
+
self.training_form = cfg.training_form
|
158 |
+
if self.training_form == "compressor" and self.compr is not None:
|
159 |
+
freeze_model(self.decoder)
|
160 |
+
|
161 |
+
self.decoder_tokenizer = AutoTokenizer.from_pretrained(cfg.decoder_model_name, use_fast=True, padding_side='left')
|
162 |
+
|
163 |
+
# define special tokens
|
164 |
+
self.decoder_tokenizer.add_special_tokens({'additional_special_tokens': ['<MEM>', '<AE>', '<ENC>', '<SEP>']})
|
165 |
+
self.decoder_tokenizer.mem_token = '<MEM>' # Memory token
|
166 |
+
self.decoder_tokenizer.ae_token = '<AE>' # token for autoencoding on decoder side
|
167 |
+
self.decoder_tokenizer.enc_token = '<ENC>' # token for autoencoding on compressor side
|
168 |
+
self.decoder_tokenizer.sep_token = '<SEP>' # sep token between document
|
169 |
+
|
170 |
+
self.decoder_tokenizer.mem_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<MEM>')
|
171 |
+
self.decoder_tokenizer.ae_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<AE>')
|
172 |
+
self.decoder_tokenizer.sep_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<SEP>')
|
173 |
+
# if pad token ecist then use pad token, othrwise bos token
|
174 |
+
if self.decoder_tokenizer.pad_token_id is None:
|
175 |
+
self.decoder_tokenizer.pad_token_id = self.decoder_tokenizer.bos_token_id
|
176 |
+
|
177 |
+
# resize the tokenizer embedding
|
178 |
+
self.decoder.resize_token_embeddings(len(self.decoder_tokenizer))
|
179 |
+
self.decoder.generation_config.top_p=None
|
180 |
+
self.decoder.generation_config.temperature=None
|
181 |
+
self.compr_model_name = cfg.compr_model_name
|
182 |
+
# other settings
|
183 |
+
self.generation_top_k = cfg.generation_top_k
|
184 |
+
self.sep = cfg.sep
|
185 |
+
self.compr_rate = cfg.compr_rate
|
186 |
+
self.local_rank = os.getenv('LOCAL_RANK', '0')
|
187 |
+
|
188 |
+
def compress_and_replace_emb(self, enc_input_ids, enc_attention_mask, dec_input_ids):
|
189 |
+
indices = range(0, enc_input_ids.size(0) + 1, self.generation_top_k)
|
190 |
+
if self.compr:
|
191 |
+
compressed_embs = self.compr(enc_input_ids, enc_attention_mask)
|
192 |
+
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
|
193 |
+
else:
|
194 |
+
compressed_embs = self.compr_decoder(enc_input_ids, enc_attention_mask)
|
195 |
+
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
|
196 |
+
return input_embeds
|
197 |
+
|
198 |
+
def compr_decoder(self, input_ids, attention_mask):
|
199 |
+
emb = self.decoder(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True).hidden_states[-1]
|
200 |
+
mask = input_ids == self.decoder_tokenizer.mem_token_id
|
201 |
+
return emb[mask].reshape(emb.size(0), -1, emb.size(-1))
|
202 |
+
|
203 |
+
|
204 |
+
def replace_embeddings(self, compressed_embs, dec_input_ids, indices):
|
205 |
+
# Embed the decoder input
|
206 |
+
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids)
|
207 |
+
num_embs = compressed_embs.size(1)
|
208 |
+
if self.sep:
|
209 |
+
slot_len = num_embs + 1
|
210 |
+
else:
|
211 |
+
slot_len = num_embs
|
212 |
+
# get first mem_token inidices
|
213 |
+
first_mem_token_indices = torch.argmax((dec_input_ids == self.decoder_tokenizer.mem_token_id).int(), dim=1)
|
214 |
+
batch_size = inputs_embeds.size(0)
|
215 |
+
# for each example in batch, replace them with compressed embeddings
|
216 |
+
for i in range(batch_size):
|
217 |
+
for j in range(indices[i], indices[i + 1]):
|
218 |
+
start_idx = first_mem_token_indices[i].item() + (j-indices[i]) * slot_len
|
219 |
+
inputs_embeds[i, start_idx:start_idx + num_embs, :] = compressed_embs[j]
|
220 |
+
return inputs_embeds
|
221 |
+
|
222 |
+
|
223 |
+
def forward(self,
|
224 |
+
enc_input_ids: torch.LongTensor = None,
|
225 |
+
enc_attention_mask: torch.LongTensor = None,
|
226 |
+
dec_input_ids: torch.LongTensor = None,
|
227 |
+
dec_attention_mask: torch.LongTensor = None,
|
228 |
+
labels: torch.LongTensor = None):
|
229 |
+
|
230 |
+
# enc_input_ids: stores the contexts, should be flattened from all queries before input, dimention (batch_size*generation_top_k, token_length)
|
231 |
+
# enc_attention_mask: attention mask of enc_input_ids
|
232 |
+
# dec_input_ids: stores the prompts (including mem tokens), dimention (batch_size, token_length)
|
233 |
+
# dec_attention_mask: attention mask of dec_input_ids
|
234 |
+
|
235 |
+
# Perform compression with gradient tracking
|
236 |
+
inputs_embeds = self.compress_and_replace_emb(enc_input_ids, enc_attention_mask, dec_input_ids)
|
237 |
+
|
238 |
+
# if training_form is compressor, then detach the inputs_embeds, to make gradient not count in decoder
|
239 |
+
if (self.training_form == "compressor") and (self.compr is None):
|
240 |
+
inputs_embeds = inputs_embeds.detach()
|
241 |
+
|
242 |
+
# decoding
|
243 |
+
decoder_outputs = self.decoder(inputs_embeds=inputs_embeds, attention_mask=dec_attention_mask, labels=labels)
|
244 |
+
|
245 |
+
return {"loss": decoder_outputs.loss, "logits": decoder_outputs.logits}
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
def generate(self, model_input, max_new_tokens=128):
|
250 |
+
device = self.decoder.device
|
251 |
+
enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask = model_input['enc_input_ids'], model_input['enc_attention_mask'], model_input['dec_input_ids'], model_input['dec_attention_mask']
|
252 |
+
inputs_embeds = self.compress_and_replace_emb(enc_input_ids.to(device), enc_attention_mask.to(device), dec_input_ids.to(device))
|
253 |
+
output_ids = self.decoder.generate(
|
254 |
+
inputs_embeds=inputs_embeds.to(device),
|
255 |
+
attention_mask=dec_attention_mask.to(device),
|
256 |
+
do_sample=False,
|
257 |
+
top_p=None,
|
258 |
+
max_new_tokens=max_new_tokens
|
259 |
+
)
|
260 |
+
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
261 |
+
return decoded
|
262 |
+
|
263 |
+
def generate_from_text(self, contexts, questions, max_new_tokens=128):
|
264 |
+
# for each question in list give input a list of contexts of equal length
|
265 |
+
# first make sure that every list in contexts are having the same length
|
266 |
+
assert len(contexts) == len(questions)
|
267 |
+
assert all([len(context) == len(contexts[0]) for context in contexts])
|
268 |
+
|
269 |
+
# prepare inp_enc for compression
|
270 |
+
# first flatten the contexts
|
271 |
+
self.generation_top_k = len(contexts[0])
|
272 |
+
flat_contexts = sum(contexts, [])
|
273 |
+
#tokenize the contexts, depending if compr exist or not
|
274 |
+
if self.compr is not None:
|
275 |
+
enc_input = self.compr.tokenizer(flat_contexts, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=self.compr_rate)
|
276 |
+
num_mem_tokens = math.ceil(enc_input['input_ids'].size(1) / self.compr_rate)
|
277 |
+
else:
|
278 |
+
# first need to add special token in flat_contexts
|
279 |
+
flat_contexts = [self.decoder_tokenizer.enc_token + self.decoder_tokenizer.bos_token + context + self.decoder_tokenizer.bos_token for context in flat_contexts]
|
280 |
+
enc_input = self.decoder_tokenizer(flat_contexts, truncation=True, return_tensors='pt', padding="longest")
|
281 |
+
num_mem_tokens = math.ceil((enc_input['input_ids'].size(1)-3) / self.compr_rate)
|
282 |
+
mem_tokens = torch.full((enc_input['input_ids'].size(0), num_mem_tokens), self.decoder_tokenizer.mem_token_id, dtype=torch.long)
|
283 |
+
enc_input['input_ids'] = torch.cat([mem_tokens, enc_input['input_ids']], dim=1)
|
284 |
+
enc_input['attention_mask'] = torch.cat([torch.ones_like(mem_tokens), enc_input['attention_mask']], dim=1)
|
285 |
+
|
286 |
+
|
287 |
+
# prepare inp_dec
|
288 |
+
mem_tokens = self.decoder_tokenizer.mem_token * num_mem_tokens
|
289 |
+
if self.sep:
|
290 |
+
mem_tokens += self.decoder_tokenizer.sep_token
|
291 |
+
|
292 |
+
instr = [self.decoder_tokenizer.bos_token + mem_tokens* self.generation_top_k + '[INST]' + question + '\n[/INST]\n' for question in questions]
|
293 |
+
inp_dec = self.decoder_tokenizer(instr, truncation=True, return_tensors='pt', padding="longest")
|
294 |
+
|
295 |
+
# generate
|
296 |
+
model_input = {
|
297 |
+
'enc_input_ids': enc_input['input_ids'],
|
298 |
+
'enc_attention_mask': enc_input['attention_mask'],
|
299 |
+
'dec_input_ids': inp_dec['input_ids'],
|
300 |
+
'dec_attention_mask': inp_dec['attention_mask']
|
301 |
+
}
|
302 |
+
|
303 |
+
return self.generate(model_input, max_new_tokens)
|
304 |
+
|
305 |
+
|
306 |
+
|