config.json
Browse files- config.json +80 -0
- config.yaml +0 -24
- inference_code/run_inference.py +1 -12
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "naver/mHuBERT-147-ASR-fr",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"add_interface": true,
|
5 |
+
"apply_spec_augment": true,
|
6 |
+
"architectures": [
|
7 |
+
"MHubertForCTC"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.1,
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"classifier_proj_size": 256,
|
12 |
+
"conv_bias": false,
|
13 |
+
"conv_dim": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512
|
21 |
+
],
|
22 |
+
"conv_kernel": [
|
23 |
+
10,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
3,
|
27 |
+
3,
|
28 |
+
2,
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"conv_stride": [
|
32 |
+
5,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2,
|
37 |
+
2,
|
38 |
+
2
|
39 |
+
],
|
40 |
+
"ctc_loss_reduction": "mean",
|
41 |
+
"ctc_token_id": 174,
|
42 |
+
"ctc_zero_infinity": false,
|
43 |
+
"do_stable_layer_norm": false,
|
44 |
+
"eos_token_id": 2,
|
45 |
+
"feat_extract_activation": "gelu",
|
46 |
+
"feat_extract_dropout": 0.0,
|
47 |
+
"feat_extract_norm": "group",
|
48 |
+
"feat_proj_dropout": 0.1,
|
49 |
+
"feat_proj_layer_norm": true,
|
50 |
+
"final_dropout": 0.3,
|
51 |
+
"fine_tuning_strategy": "all",
|
52 |
+
"gradient_checkpointing": false,
|
53 |
+
"hidden_act": "gelu",
|
54 |
+
"hidden_dropout": 0.1,
|
55 |
+
"hidden_dropout_prob": 0.1,
|
56 |
+
"hidden_size": 768,
|
57 |
+
"initializer_range": 0.02,
|
58 |
+
"intermediate_size": 3072,
|
59 |
+
"layer_norm_eps": 1e-05,
|
60 |
+
"layerdrop": 0.1,
|
61 |
+
"mask_feature_length": 10,
|
62 |
+
"mask_feature_min_masks": 0,
|
63 |
+
"mask_feature_prob": 0.0,
|
64 |
+
"mask_time_length": 10,
|
65 |
+
"mask_time_min_masks": 2,
|
66 |
+
"mask_time_prob": 0.05,
|
67 |
+
"model_type": "hubert",
|
68 |
+
"num_attention_heads": 12,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 12,
|
73 |
+
"num_interface_layers": 3,
|
74 |
+
"pad_token_id": 173,
|
75 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.32.0",
|
78 |
+
"use_weighted_layer_sum": false,
|
79 |
+
"vocab_size": 175
|
80 |
+
}
|
config.yaml
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
group_by_length: True
|
2 |
-
evaluation_strategy: "steps"
|
3 |
-
num_train_epochs: 100
|
4 |
-
fp16: False
|
5 |
-
gradient_checkpointing: True
|
6 |
-
eval_steps: 10000
|
7 |
-
save_steps: 10000
|
8 |
-
logging_steps: 10000
|
9 |
-
learning_rate: 1e-4
|
10 |
-
adam_beta1: 0.9
|
11 |
-
adam_beta2: 0.98
|
12 |
-
adam_epsilon: 1e-08
|
13 |
-
warmup_ratio: 0.2
|
14 |
-
save_total_limit: 4
|
15 |
-
load_best_model_at_end: True
|
16 |
-
per_device_train_batch_size: 8
|
17 |
-
per_device_eval_batch_size: 2
|
18 |
-
metric_for_best_model: "cer"
|
19 |
-
greater_is_better: False
|
20 |
-
gradient_accumulation_steps: 8
|
21 |
-
final_dropout: 0.3
|
22 |
-
seed: 3452
|
23 |
-
add_interface_layer: True
|
24 |
-
num_interface_layers: 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_code/run_inference.py
CHANGED
@@ -16,23 +16,12 @@ fbk_test_id = 'FBK-MT/Speech-MASSIVE-test'
|
|
16 |
mhubert_id = 'utter-project/mHuBERT-147'
|
17 |
|
18 |
def load_asr_model():
|
19 |
-
def init_config():
|
20 |
-
config = HubertConfig.from_pretrained(mhubert_id)
|
21 |
-
config.pad_token_id = processor.tokenizer.pad_token_id
|
22 |
-
config.ctc_token_id = processor.tokenizer.convert_tokens_to_ids('[CTC]')
|
23 |
-
config.vocab_size = len(processor.tokenizer)
|
24 |
-
|
25 |
-
config.output_hidden_states = False
|
26 |
-
config.add_interface = True
|
27 |
-
config.num_interface_layers = 3
|
28 |
-
return config
|
29 |
-
|
30 |
# Load the ASR model
|
31 |
tokenizer = Wav2Vec2CTCTokenizer('vocab.json', unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
|
32 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(mhubert_id)
|
33 |
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
34 |
|
35 |
-
config =
|
36 |
model = mHubertForCTC.from_pretrained("naver/mHuBERT-147-ASR-fr", config=config)
|
37 |
model.eval()
|
38 |
return model, processor
|
|
|
16 |
mhubert_id = 'utter-project/mHuBERT-147'
|
17 |
|
18 |
def load_asr_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Load the ASR model
|
20 |
tokenizer = Wav2Vec2CTCTokenizer('vocab.json', unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
|
21 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(mhubert_id)
|
22 |
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
23 |
|
24 |
+
config = HubertConfig.from_pretrained('config.json')
|
25 |
model = mHubertForCTC.from_pretrained("naver/mHuBERT-147-ASR-fr", config=config)
|
26 |
model.eval()
|
27 |
return model, processor
|