Update README.md
Browse files
README.md
CHANGED
@@ -4,32 +4,29 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
7 |
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
16 |
-
## Usage (
|
17 |
|
18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
|
20 |
```
|
21 |
-
pip install
|
22 |
```
|
23 |
|
24 |
Then you can use the model like this:
|
25 |
|
26 |
```python
|
27 |
-
from
|
28 |
-
|
29 |
-
|
30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
```
|
34 |
|
35 |
|
@@ -77,12 +74,15 @@ Parameters of the fit()-Method:
|
|
77 |
## Full Model Architecture
|
78 |
```
|
79 |
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length':
|
81 |
-
(1): Pooling({'word_embedding_dimension':
|
82 |
(2): Normalize()
|
83 |
)
|
84 |
```
|
85 |
|
|
|
|
|
|
|
86 |
## Citing & Authors
|
87 |
|
88 |
<!--- Describe where people can find more information -->
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- transformers
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# Setfit Classification Model ON Conversion Dataset With mpnet sbert Model as Base
|
12 |
|
13 |
+
This is a Setfit Model with the L6 model as a Base for classification.
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
17 |
+
## Usage (Setfit)
|
18 |
|
|
|
19 |
|
20 |
```
|
21 |
+
pip install setfit
|
22 |
```
|
23 |
|
24 |
Then you can use the model like this:
|
25 |
|
26 |
```python
|
27 |
+
from setfit import SetFitModel
|
28 |
+
model = SetFitModel.from_pretrained("nayan06/binary-classifier-conversion-intent-1.1-mpnet")
|
29 |
+
prediction = model(['i want to buy thing'])
|
|
|
|
|
|
|
30 |
```
|
31 |
|
32 |
|
|
|
74 |
## Full Model Architecture
|
75 |
```
|
76 |
SentenceTransformer(
|
77 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
78 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
79 |
(2): Normalize()
|
80 |
)
|
81 |
```
|
82 |
|
83 |
+
## Dataset Used
|
84 |
+
https://huggingface.co/datasets/nayan06/conversion1.0
|
85 |
+
|
86 |
## Citing & Authors
|
87 |
|
88 |
<!--- Describe where people can find more information -->
|