nazhan commited on
Commit
53aea9d
1 Parent(s): 5ffde80

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: What tables are included in the starhub_data_asset database that relate to
14
+ customer complaints?
15
+ - text: What are the tables that I can access in the starhub_data_asset database?
16
+ - text: Can I have avg Cost_Efficiency
17
+ - text: Analyze product category revenue impact.
18
+ - text: Retrieve data_asset_kpi_ma_product details.
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with BAAI/bge-small-en-v1.5
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.9914529914529915
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with BAAI/bge-small-en-v1.5
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 7 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | Generalreply | <ul><li>'Can you recommend a good movie to watch?'</li><li>"Oh, that's a tough one! There are so many good memories to choose from. But if I had to pick just one, I think it would be spending summers at my grandparent's house. We would play board games, make homemade ice cream, and have big family dinners. It was always so much fun!"</li><li>'Oh, I love reading books! My favorite genre is definitely fantasy. How about you? What kind of books do you like to read?'</li></ul> |
67
+ | Lookup_1 | <ul><li>'Get me data_asset_kpi_cf cash flow.'</li><li>'Display data_asset_001_pcc for electronics category.'</li><li>'Calculate Gross Profit Margin Trends.'</li></ul> |
68
+ | Lookup | <ul><li>"What are the products in the 'Clothing' category?"</li><li>"Get me the phone numbers of customers with the last name 'Johnson'."</li><li>"Can you filter by employees who have the last name 'Brown'?"</li></ul> |
69
+ | Aggregation | <ul><li>'Get me max Accumulated Amortisation and Impairment.'</li><li>'Can I have mode of Revenue'</li><li>'Show me count company_name'</li></ul> |
70
+ | Tablejoin | <ul><li>'Could you merge the Orders and Employees tables to identify which employees have processed high-value orders?'</li><li>'Could you connect the Products and Orders tables to analyze sales data by product category?'</li><li>'How can I connect the Customers and Orders tables to find customers who made purchases during a specific promotion?'</li></ul> |
71
+ | Viewtables | <ul><li>'What are the tables in the starhub_data_asset database that a user can join to perform a sales analysis?'</li><li>'What tables can be found in the asset-tracking section of the starhub_data_asset database?'</li><li>'What tables exist in the starhub_data_asset database?'</li></ul> |
72
+ | Rejection | <ul><li>"Let's avoid creating any new data sets."</li><li>"I'd prefer to avoid generating data fields."</li><li>"I'm not interested in filtering this collection."</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 0.9915 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("nazhan/bge-small-en-v1.5-brahmaputra-iter-10")
98
+ # Run inference
99
+ preds = model("Can I have avg Cost_Efficiency")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 1 | 8.6563 | 62 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:-------------|:----------------------|
135
+ | Tablejoin | 129 |
136
+ | Rejection | 77 |
137
+ | Aggregation | 282 |
138
+ | Lookup | 60 |
139
+ | Generalreply | 63 |
140
+ | Viewtables | 74 |
141
+ | Lookup_1 | 150 |
142
+
143
+ ### Training Hyperparameters
144
+ - batch_size: (16, 16)
145
+ - num_epochs: (1, 1)
146
+ - max_steps: -1
147
+ - sampling_strategy: oversampling
148
+ - body_learning_rate: (2e-05, 1e-05)
149
+ - head_learning_rate: 0.01
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - seed: 42
157
+ - eval_max_steps: -1
158
+ - load_best_model_at_end: True
159
+
160
+ ### Training Results
161
+ | Epoch | Step | Training Loss | Validation Loss |
162
+ |:-------:|:---------:|:-------------:|:---------------:|
163
+ | 0.0000 | 1 | 0.2038 | - |
164
+ | 0.0014 | 50 | 0.2019 | - |
165
+ | 0.0029 | 100 | 0.1983 | - |
166
+ | 0.0043 | 150 | 0.206 | - |
167
+ | 0.0057 | 200 | 0.2268 | - |
168
+ | 0.0071 | 250 | 0.2025 | - |
169
+ | 0.0086 | 300 | 0.2041 | - |
170
+ | 0.0100 | 350 | 0.1426 | - |
171
+ | 0.0114 | 400 | 0.1513 | - |
172
+ | 0.0129 | 450 | 0.1215 | - |
173
+ | 0.0143 | 500 | 0.1426 | - |
174
+ | 0.0157 | 550 | 0.0859 | - |
175
+ | 0.0172 | 600 | 0.0486 | - |
176
+ | 0.0186 | 650 | 0.0378 | - |
177
+ | 0.0200 | 700 | 0.0519 | - |
178
+ | 0.0214 | 750 | 0.0717 | - |
179
+ | 0.0229 | 800 | 0.1161 | - |
180
+ | 0.0243 | 850 | 0.0771 | - |
181
+ | 0.0257 | 900 | 0.074 | - |
182
+ | 0.0272 | 950 | 0.0567 | - |
183
+ | 0.0286 | 1000 | 0.0223 | - |
184
+ | 0.0300 | 1050 | 0.0266 | - |
185
+ | 0.0315 | 1100 | 0.0261 | - |
186
+ | 0.0329 | 1150 | 0.0333 | - |
187
+ | 0.0343 | 1200 | 0.0107 | - |
188
+ | 0.0357 | 1250 | 0.0123 | - |
189
+ | 0.0372 | 1300 | 0.0193 | - |
190
+ | 0.0386 | 1350 | 0.0039 | - |
191
+ | 0.0400 | 1400 | 0.0079 | - |
192
+ | 0.0415 | 1450 | 0.0035 | - |
193
+ | 0.0429 | 1500 | 0.003 | - |
194
+ | 0.0443 | 1550 | 0.0041 | - |
195
+ | 0.0457 | 1600 | 0.0038 | - |
196
+ | 0.0472 | 1650 | 0.002 | - |
197
+ | 0.0486 | 1700 | 0.0028 | - |
198
+ | 0.0500 | 1750 | 0.0056 | - |
199
+ | 0.0515 | 1800 | 0.0035 | - |
200
+ | 0.0529 | 1850 | 0.0027 | - |
201
+ | 0.0543 | 1900 | 0.0028 | - |
202
+ | 0.0558 | 1950 | 0.0028 | - |
203
+ | 0.0572 | 2000 | 0.0019 | - |
204
+ | 0.0586 | 2050 | 0.0046 | - |
205
+ | 0.0600 | 2100 | 0.0017 | - |
206
+ | 0.0615 | 2150 | 0.0016 | - |
207
+ | 0.0629 | 2200 | 0.0022 | - |
208
+ | 0.0643 | 2250 | 0.002 | - |
209
+ | 0.0658 | 2300 | 0.0029 | - |
210
+ | 0.0672 | 2350 | 0.0032 | - |
211
+ | 0.0686 | 2400 | 0.0018 | - |
212
+ | 0.0701 | 2450 | 0.0015 | - |
213
+ | 0.0715 | 2500 | 0.0015 | - |
214
+ | 0.0729 | 2550 | 0.0016 | - |
215
+ | 0.0743 | 2600 | 0.0012 | - |
216
+ | 0.0758 | 2650 | 0.0014 | - |
217
+ | 0.0772 | 2700 | 0.0015 | - |
218
+ | 0.0786 | 2750 | 0.0018 | - |
219
+ | 0.0801 | 2800 | 0.0012 | - |
220
+ | 0.0815 | 2850 | 0.0009 | - |
221
+ | 0.0829 | 2900 | 0.001 | - |
222
+ | 0.0843 | 2950 | 0.0011 | - |
223
+ | 0.0858 | 3000 | 0.0011 | - |
224
+ | 0.0872 | 3050 | 0.001 | - |
225
+ | 0.0886 | 3100 | 0.0012 | - |
226
+ | 0.0901 | 3150 | 0.0006 | - |
227
+ | 0.0915 | 3200 | 0.0013 | - |
228
+ | 0.0929 | 3250 | 0.0007 | - |
229
+ | 0.0944 | 3300 | 0.0007 | - |
230
+ | 0.0958 | 3350 | 0.0009 | - |
231
+ | 0.0972 | 3400 | 0.0008 | - |
232
+ | 0.0986 | 3450 | 0.0005 | - |
233
+ | 0.1001 | 3500 | 0.001 | - |
234
+ | 0.1015 | 3550 | 0.001 | - |
235
+ | 0.1029 | 3600 | 0.0008 | - |
236
+ | 0.1044 | 3650 | 0.0007 | - |
237
+ | 0.1058 | 3700 | 0.0006 | - |
238
+ | 0.1072 | 3750 | 0.0009 | - |
239
+ | 0.1086 | 3800 | 0.0012 | - |
240
+ | 0.1101 | 3850 | 0.0007 | - |
241
+ | 0.1115 | 3900 | 0.0008 | - |
242
+ | 0.1129 | 3950 | 0.0009 | - |
243
+ | 0.1144 | 4000 | 0.0007 | - |
244
+ | 0.1158 | 4050 | 0.0007 | - |
245
+ | 0.1172 | 4100 | 0.0007 | - |
246
+ | 0.1187 | 4150 | 0.0006 | - |
247
+ | 0.1201 | 4200 | 0.0006 | - |
248
+ | 0.1215 | 4250 | 0.0011 | - |
249
+ | 0.1229 | 4300 | 0.0012 | - |
250
+ | 0.1244 | 4350 | 0.0007 | - |
251
+ | 0.1258 | 4400 | 0.0007 | - |
252
+ | 0.1272 | 4450 | 0.0006 | - |
253
+ | 0.1287 | 4500 | 0.0005 | - |
254
+ | 0.1301 | 4550 | 0.0008 | - |
255
+ | 0.1315 | 4600 | 0.0006 | - |
256
+ | 0.1330 | 4650 | 0.0007 | - |
257
+ | 0.1344 | 4700 | 0.0006 | - |
258
+ | 0.1358 | 4750 | 0.0005 | - |
259
+ | 0.1372 | 4800 | 0.0006 | - |
260
+ | 0.1387 | 4850 | 0.0008 | - |
261
+ | 0.1401 | 4900 | 0.0008 | - |
262
+ | 0.1415 | 4950 | 0.0004 | - |
263
+ | 0.1430 | 5000 | 0.0005 | - |
264
+ | 0.1444 | 5050 | 0.0005 | - |
265
+ | 0.1458 | 5100 | 0.0007 | - |
266
+ | 0.1472 | 5150 | 0.0006 | - |
267
+ | 0.1487 | 5200 | 0.0006 | - |
268
+ | 0.1501 | 5250 | 0.0004 | - |
269
+ | 0.1515 | 5300 | 0.0005 | - |
270
+ | 0.1530 | 5350 | 0.0007 | - |
271
+ | 0.1544 | 5400 | 0.0007 | - |
272
+ | 0.1558 | 5450 | 0.0005 | - |
273
+ | 0.1573 | 5500 | 0.0007 | - |
274
+ | 0.1587 | 5550 | 0.0004 | - |
275
+ | 0.1601 | 5600 | 0.0004 | - |
276
+ | 0.1615 | 5650 | 0.0006 | - |
277
+ | 0.1630 | 5700 | 0.0005 | - |
278
+ | 0.1644 | 5750 | 0.0006 | - |
279
+ | 0.1658 | 5800 | 0.0004 | - |
280
+ | 0.1673 | 5850 | 0.0005 | - |
281
+ | 0.1687 | 5900 | 0.0007 | - |
282
+ | 0.1701 | 5950 | 0.0005 | - |
283
+ | 0.1716 | 6000 | 0.0005 | - |
284
+ | 0.1730 | 6050 | 0.0003 | - |
285
+ | 0.1744 | 6100 | 0.0003 | - |
286
+ | 0.1758 | 6150 | 0.0005 | - |
287
+ | 0.1773 | 6200 | 0.0007 | - |
288
+ | 0.1787 | 6250 | 0.0004 | - |
289
+ | 0.1801 | 6300 | 0.0006 | - |
290
+ | 0.1816 | 6350 | 0.0004 | - |
291
+ | 0.1830 | 6400 | 0.0003 | - |
292
+ | 0.1844 | 6450 | 0.0005 | - |
293
+ | 0.1858 | 6500 | 0.0004 | - |
294
+ | 0.1873 | 6550 | 0.0006 | - |
295
+ | 0.1887 | 6600 | 0.0005 | - |
296
+ | 0.1901 | 6650 | 0.0005 | - |
297
+ | 0.1916 | 6700 | 0.0003 | - |
298
+ | 0.1930 | 6750 | 0.0004 | - |
299
+ | 0.1944 | 6800 | 0.0004 | - |
300
+ | 0.1959 | 6850 | 0.0004 | - |
301
+ | 0.1973 | 6900 | 0.0003 | - |
302
+ | 0.1987 | 6950 | 0.0004 | - |
303
+ | 0.2001 | 7000 | 0.0004 | - |
304
+ | 0.2016 | 7050 | 0.0003 | - |
305
+ | 0.2030 | 7100 | 0.0003 | - |
306
+ | 0.2044 | 7150 | 0.0005 | - |
307
+ | 0.2059 | 7200 | 0.0004 | - |
308
+ | 0.2073 | 7250 | 0.0003 | - |
309
+ | 0.2087 | 7300 | 0.0002 | - |
310
+ | 0.2102 | 7350 | 0.0003 | - |
311
+ | 0.2116 | 7400 | 0.0004 | - |
312
+ | 0.2130 | 7450 | 0.0006 | - |
313
+ | 0.2144 | 7500 | 0.0003 | - |
314
+ | 0.2159 | 7550 | 0.0002 | - |
315
+ | 0.2173 | 7600 | 0.0004 | - |
316
+ | 0.2187 | 7650 | 0.0003 | - |
317
+ | 0.2202 | 7700 | 0.0005 | - |
318
+ | 0.2216 | 7750 | 0.0004 | - |
319
+ | 0.2230 | 7800 | 0.0004 | - |
320
+ | 0.2244 | 7850 | 0.0004 | - |
321
+ | 0.2259 | 7900 | 0.0003 | - |
322
+ | 0.2273 | 7950 | 0.0005 | - |
323
+ | 0.2287 | 8000 | 0.0003 | - |
324
+ | 0.2302 | 8050 | 0.0003 | - |
325
+ | 0.2316 | 8100 | 0.0003 | - |
326
+ | 0.2330 | 8150 | 0.0002 | - |
327
+ | 0.2345 | 8200 | 0.0002 | - |
328
+ | 0.2359 | 8250 | 0.0004 | - |
329
+ | 0.2373 | 8300 | 0.0004 | - |
330
+ | 0.2387 | 8350 | 0.0004 | - |
331
+ | 0.2402 | 8400 | 0.0003 | - |
332
+ | 0.2416 | 8450 | 0.0002 | - |
333
+ | 0.2430 | 8500 | 0.0002 | - |
334
+ | 0.2445 | 8550 | 0.0003 | - |
335
+ | 0.2459 | 8600 | 0.0004 | - |
336
+ | 0.2473 | 8650 | 0.0004 | - |
337
+ | 0.2487 | 8700 | 0.0003 | - |
338
+ | 0.2502 | 8750 | 0.0002 | - |
339
+ | 0.2516 | 8800 | 0.0003 | - |
340
+ | 0.2530 | 8850 | 0.0003 | - |
341
+ | 0.2545 | 8900 | 0.0004 | - |
342
+ | 0.2559 | 8950 | 0.0003 | - |
343
+ | 0.2573 | 9000 | 0.0002 | - |
344
+ | 0.2588 | 9050 | 0.0003 | - |
345
+ | 0.2602 | 9100 | 0.0003 | - |
346
+ | 0.2616 | 9150 | 0.0003 | - |
347
+ | 0.2630 | 9200 | 0.0003 | - |
348
+ | 0.2645 | 9250 | 0.0002 | - |
349
+ | 0.2659 | 9300 | 0.0002 | - |
350
+ | 0.2673 | 9350 | 0.0003 | - |
351
+ | 0.2688 | 9400 | 0.0552 | - |
352
+ | 0.2702 | 9450 | 0.0003 | - |
353
+ | 0.2716 | 9500 | 0.0003 | - |
354
+ | 0.2731 | 9550 | 0.0004 | - |
355
+ | 0.2745 | 9600 | 0.0004 | - |
356
+ | 0.2759 | 9650 | 0.0005 | - |
357
+ | 0.2773 | 9700 | 0.0003 | - |
358
+ | 0.2788 | 9750 | 0.0003 | - |
359
+ | 0.2802 | 9800 | 0.0003 | - |
360
+ | 0.2816 | 9850 | 0.0003 | - |
361
+ | 0.2831 | 9900 | 0.0004 | - |
362
+ | 0.2845 | 9950 | 0.0003 | - |
363
+ | 0.2859 | 10000 | 0.0003 | - |
364
+ | 0.2873 | 10050 | 0.0004 | - |
365
+ | 0.2888 | 10100 | 0.0005 | - |
366
+ | 0.2902 | 10150 | 0.0003 | - |
367
+ | 0.2916 | 10200 | 0.0004 | - |
368
+ | 0.2931 | 10250 | 0.0002 | - |
369
+ | 0.2945 | 10300 | 0.0005 | - |
370
+ | 0.2959 | 10350 | 0.0003 | - |
371
+ | 0.2974 | 10400 | 0.0003 | - |
372
+ | 0.2988 | 10450 | 0.0002 | - |
373
+ | 0.3002 | 10500 | 0.0003 | - |
374
+ | 0.3016 | 10550 | 0.0004 | - |
375
+ | 0.3031 | 10600 | 0.0003 | - |
376
+ | 0.3045 | 10650 | 0.0003 | - |
377
+ | 0.3059 | 10700 | 0.0004 | - |
378
+ | 0.3074 | 10750 | 0.0003 | - |
379
+ | 0.3088 | 10800 | 0.0003 | - |
380
+ | 0.3102 | 10850 | 0.0003 | - |
381
+ | 0.3117 | 10900 | 0.0002 | - |
382
+ | 0.3131 | 10950 | 0.0005 | - |
383
+ | 0.3145 | 11000 | 0.0003 | - |
384
+ | 0.3159 | 11050 | 0.0002 | - |
385
+ | 0.3174 | 11100 | 0.0003 | - |
386
+ | 0.3188 | 11150 | 0.0004 | - |
387
+ | 0.3202 | 11200 | 0.0004 | - |
388
+ | 0.3217 | 11250 | 0.0002 | - |
389
+ | 0.3231 | 11300 | 0.0003 | - |
390
+ | 0.3245 | 11350 | 0.0003 | - |
391
+ | 0.3259 | 11400 | 0.0003 | - |
392
+ | 0.3274 | 11450 | 0.0004 | - |
393
+ | 0.3288 | 11500 | 0.0004 | - |
394
+ | 0.3302 | 11550 | 0.0003 | - |
395
+ | 0.3317 | 11600 | 0.0003 | - |
396
+ | 0.3331 | 11650 | 0.0002 | - |
397
+ | 0.3345 | 11700 | 0.0004 | - |
398
+ | 0.3360 | 11750 | 0.0002 | - |
399
+ | 0.3374 | 11800 | 0.0003 | - |
400
+ | 0.3388 | 11850 | 0.0002 | - |
401
+ | 0.3402 | 11900 | 0.0003 | - |
402
+ | 0.3417 | 11950 | 0.0002 | - |
403
+ | 0.3431 | 12000 | 0.0004 | - |
404
+ | 0.3445 | 12050 | 0.0003 | - |
405
+ | 0.3460 | 12100 | 0.0004 | - |
406
+ | 0.3474 | 12150 | 0.0005 | - |
407
+ | 0.3488 | 12200 | 0.0004 | - |
408
+ | 0.3503 | 12250 | 0.0004 | - |
409
+ | 0.3517 | 12300 | 0.0002 | - |
410
+ | 0.3531 | 12350 | 0.0002 | - |
411
+ | 0.3545 | 12400 | 0.0004 | - |
412
+ | 0.3560 | 12450 | 0.0002 | - |
413
+ | 0.3574 | 12500 | 0.0002 | - |
414
+ | 0.3588 | 12550 | 0.0003 | - |
415
+ | 0.3603 | 12600 | 0.0005 | - |
416
+ | 0.3617 | 12650 | 0.0003 | - |
417
+ | 0.3631 | 12700 | 0.0003 | - |
418
+ | 0.3645 | 12750 | 0.0002 | - |
419
+ | 0.3660 | 12800 | 0.0003 | - |
420
+ | 0.3674 | 12850 | 0.0002 | - |
421
+ | 0.3688 | 12900 | 0.0002 | - |
422
+ | 0.3703 | 12950 | 0.0001 | - |
423
+ | 0.3717 | 13000 | 0.0002 | - |
424
+ | 0.3731 | 13050 | 0.0003 | - |
425
+ | 0.3746 | 13100 | 0.0003 | - |
426
+ | 0.3760 | 13150 | 0.0002 | - |
427
+ | 0.3774 | 13200 | 0.0004 | - |
428
+ | 0.3788 | 13250 | 0.0003 | - |
429
+ | 0.3803 | 13300 | 0.0002 | - |
430
+ | 0.3817 | 13350 | 0.0003 | - |
431
+ | 0.3831 | 13400 | 0.0003 | - |
432
+ | 0.3846 | 13450 | 0.0003 | - |
433
+ | 0.3860 | 13500 | 0.0002 | - |
434
+ | 0.3874 | 13550 | 0.0002 | - |
435
+ | 0.3888 | 13600 | 0.0003 | - |
436
+ | 0.3903 | 13650 | 0.0003 | - |
437
+ | 0.3917 | 13700 | 0.0002 | - |
438
+ | 0.3931 | 13750 | 0.0002 | - |
439
+ | 0.3946 | 13800 | 0.0002 | - |
440
+ | 0.3960 | 13850 | 0.0004 | - |
441
+ | 0.3974 | 13900 | 0.0003 | - |
442
+ | 0.3989 | 13950 | 0.0002 | - |
443
+ | 0.4003 | 14000 | 0.0003 | - |
444
+ | 0.4017 | 14050 | 0.0001 | - |
445
+ | 0.4031 | 14100 | 0.0002 | - |
446
+ | 0.4046 | 14150 | 0.0001 | - |
447
+ | 0.4060 | 14200 | 0.0002 | - |
448
+ | 0.4074 | 14250 | 0.0002 | - |
449
+ | 0.4089 | 14300 | 0.0002 | - |
450
+ | 0.4103 | 14350 | 0.0003 | - |
451
+ | 0.4117 | 14400 | 0.0003 | - |
452
+ | 0.4132 | 14450 | 0.0002 | - |
453
+ | 0.4146 | 14500 | 0.0003 | - |
454
+ | 0.4160 | 14550 | 0.0003 | - |
455
+ | 0.4174 | 14600 | 0.0002 | - |
456
+ | 0.4189 | 14650 | 0.0002 | - |
457
+ | 0.4203 | 14700 | 0.0003 | - |
458
+ | 0.4217 | 14750 | 0.0003 | - |
459
+ | 0.4232 | 14800 | 0.0002 | - |
460
+ | 0.4246 | 14850 | 0.0003 | - |
461
+ | 0.4260 | 14900 | 0.0003 | - |
462
+ | 0.4274 | 14950 | 0.0003 | - |
463
+ | 0.4289 | 15000 | 0.0002 | - |
464
+ | 0.4303 | 15050 | 0.0002 | - |
465
+ | 0.4317 | 15100 | 0.0002 | - |
466
+ | 0.4332 | 15150 | 0.0004 | - |
467
+ | 0.4346 | 15200 | 0.0003 | - |
468
+ | 0.4360 | 15250 | 0.0001 | - |
469
+ | 0.4375 | 15300 | 0.0002 | - |
470
+ | 0.4389 | 15350 | 0.0001 | - |
471
+ | 0.4403 | 15400 | 0.0002 | - |
472
+ | 0.4417 | 15450 | 0.0001 | - |
473
+ | 0.4432 | 15500 | 0.0002 | - |
474
+ | 0.4446 | 15550 | 0.0002 | - |
475
+ | 0.4460 | 15600 | 0.0002 | - |
476
+ | 0.4475 | 15650 | 0.0002 | - |
477
+ | 0.4489 | 15700 | 0.0003 | - |
478
+ | 0.4503 | 15750 | 0.0002 | - |
479
+ | 0.4518 | 15800 | 0.0002 | - |
480
+ | 0.4532 | 15850 | 0.0003 | - |
481
+ | 0.4546 | 15900 | 0.0003 | - |
482
+ | 0.4560 | 15950 | 0.0002 | - |
483
+ | 0.4575 | 16000 | 0.0002 | - |
484
+ | 0.4589 | 16050 | 0.0002 | - |
485
+ | 0.4603 | 16100 | 0.0003 | - |
486
+ | 0.4618 | 16150 | 0.0002 | - |
487
+ | 0.4632 | 16200 | 0.0003 | - |
488
+ | 0.4646 | 16250 | 0.0002 | - |
489
+ | 0.4660 | 16300 | 0.0002 | - |
490
+ | 0.4675 | 16350 | 0.0002 | - |
491
+ | 0.4689 | 16400 | 0.0002 | - |
492
+ | 0.4703 | 16450 | 0.0002 | - |
493
+ | 0.4718 | 16500 | 0.0002 | - |
494
+ | 0.4732 | 16550 | 0.0002 | - |
495
+ | 0.4746 | 16600 | 0.0003 | - |
496
+ | 0.4761 | 16650 | 0.0002 | - |
497
+ | 0.4775 | 16700 | 0.0002 | - |
498
+ | 0.4789 | 16750 | 0.0002 | - |
499
+ | 0.4803 | 16800 | 0.0002 | - |
500
+ | 0.4818 | 16850 | 0.0001 | - |
501
+ | 0.4832 | 16900 | 0.0003 | - |
502
+ | 0.4846 | 16950 | 0.0002 | - |
503
+ | 0.4861 | 17000 | 0.0002 | - |
504
+ | 0.4875 | 17050 | 0.0002 | - |
505
+ | 0.4889 | 17100 | 0.0002 | - |
506
+ | 0.4904 | 17150 | 0.0002 | - |
507
+ | 0.4918 | 17200 | 0.0002 | - |
508
+ | 0.4932 | 17250 | 0.0002 | - |
509
+ | 0.4946 | 17300 | 0.0002 | - |
510
+ | 0.4961 | 17350 | 0.0002 | - |
511
+ | 0.4975 | 17400 | 0.0002 | - |
512
+ | 0.4989 | 17450 | 0.0001 | - |
513
+ | 0.5004 | 17500 | 0.0001 | - |
514
+ | 0.5018 | 17550 | 0.0002 | - |
515
+ | 0.5032 | 17600 | 0.0002 | - |
516
+ | 0.5046 | 17650 | 0.0002 | - |
517
+ | 0.5061 | 17700 | 0.0002 | - |
518
+ | 0.5075 | 17750 | 0.0002 | - |
519
+ | 0.5089 | 17800 | 0.0002 | - |
520
+ | 0.5104 | 17850 | 0.0002 | - |
521
+ | 0.5118 | 17900 | 0.0002 | - |
522
+ | 0.5132 | 17950 | 0.0003 | - |
523
+ | 0.5147 | 18000 | 0.0002 | - |
524
+ | 0.5161 | 18050 | 0.0002 | - |
525
+ | 0.5175 | 18100 | 0.0002 | - |
526
+ | 0.5189 | 18150 | 0.0002 | - |
527
+ | 0.5204 | 18200 | 0.0002 | - |
528
+ | 0.5218 | 18250 | 0.0002 | - |
529
+ | 0.5232 | 18300 | 0.0002 | - |
530
+ | 0.5247 | 18350 | 0.0002 | - |
531
+ | 0.5261 | 18400 | 0.0002 | - |
532
+ | 0.5275 | 18450 | 0.0003 | - |
533
+ | 0.5289 | 18500 | 0.0001 | - |
534
+ | 0.5304 | 18550 | 0.0002 | - |
535
+ | 0.5318 | 18600 | 0.0001 | - |
536
+ | 0.5332 | 18650 | 0.0002 | - |
537
+ | 0.5347 | 18700 | 0.0002 | - |
538
+ | 0.5361 | 18750 | 0.0002 | - |
539
+ | 0.5375 | 18800 | 0.0002 | - |
540
+ | 0.5390 | 18850 | 0.0001 | - |
541
+ | 0.5404 | 18900 | 0.0001 | - |
542
+ | 0.5418 | 18950 | 0.0001 | - |
543
+ | 0.5432 | 19000 | 0.0002 | - |
544
+ | 0.5447 | 19050 | 0.0002 | - |
545
+ | 0.5461 | 19100 | 0.0002 | - |
546
+ | 0.5475 | 19150 | 0.0002 | - |
547
+ | 0.5490 | 19200 | 0.0002 | - |
548
+ | 0.5504 | 19250 | 0.0002 | - |
549
+ | 0.5518 | 19300 | 0.0001 | - |
550
+ | 0.5533 | 19350 | 0.0002 | - |
551
+ | 0.5547 | 19400 | 0.0002 | - |
552
+ | 0.5561 | 19450 | 0.0004 | - |
553
+ | 0.5575 | 19500 | 0.0002 | - |
554
+ | 0.5590 | 19550 | 0.0002 | - |
555
+ | 0.5604 | 19600 | 0.0003 | - |
556
+ | 0.5618 | 19650 | 0.0003 | - |
557
+ | 0.5633 | 19700 | 0.0002 | - |
558
+ | 0.5647 | 19750 | 0.0002 | - |
559
+ | 0.5661 | 19800 | 0.0001 | - |
560
+ | 0.5675 | 19850 | 0.0003 | - |
561
+ | 0.5690 | 19900 | 0.0002 | - |
562
+ | 0.5704 | 19950 | 0.0002 | - |
563
+ | 0.5718 | 20000 | 0.0001 | - |
564
+ | 0.5733 | 20050 | 0.0003 | - |
565
+ | 0.5747 | 20100 | 0.0001 | - |
566
+ | 0.5761 | 20150 | 0.0002 | - |
567
+ | 0.5776 | 20200 | 0.0003 | - |
568
+ | 0.5790 | 20250 | 0.0003 | - |
569
+ | 0.5804 | 20300 | 0.0002 | - |
570
+ | 0.5818 | 20350 | 0.0003 | - |
571
+ | 0.5833 | 20400 | 0.0002 | - |
572
+ | 0.5847 | 20450 | 0.0002 | - |
573
+ | 0.5861 | 20500 | 0.0002 | - |
574
+ | 0.5876 | 20550 | 0.0001 | - |
575
+ | 0.5890 | 20600 | 0.0002 | - |
576
+ | 0.5904 | 20650 | 0.0002 | - |
577
+ | 0.5919 | 20700 | 0.0002 | - |
578
+ | 0.5933 | 20750 | 0.0002 | - |
579
+ | 0.5947 | 20800 | 0.0001 | - |
580
+ | 0.5961 | 20850 | 0.0001 | - |
581
+ | 0.5976 | 20900 | 0.0001 | - |
582
+ | 0.5990 | 20950 | 0.0001 | - |
583
+ | 0.6004 | 21000 | 0.0002 | - |
584
+ | 0.6019 | 21050 | 0.0001 | - |
585
+ | 0.6033 | 21100 | 0.0002 | - |
586
+ | 0.6047 | 21150 | 0.0001 | - |
587
+ | 0.6061 | 21200 | 0.0002 | - |
588
+ | 0.6076 | 21250 | 0.0002 | - |
589
+ | 0.6090 | 21300 | 0.0001 | - |
590
+ | 0.6104 | 21350 | 0.0002 | - |
591
+ | 0.6119 | 21400 | 0.0001 | - |
592
+ | 0.6133 | 21450 | 0.0002 | - |
593
+ | 0.6147 | 21500 | 0.0001 | - |
594
+ | 0.6162 | 21550 | 0.0002 | - |
595
+ | 0.6176 | 21600 | 0.0001 | - |
596
+ | 0.6190 | 21650 | 0.0001 | - |
597
+ | 0.6204 | 21700 | 0.0001 | - |
598
+ | 0.6219 | 21750 | 0.0002 | - |
599
+ | 0.6233 | 21800 | 0.0001 | - |
600
+ | 0.6247 | 21850 | 0.0001 | - |
601
+ | 0.6262 | 21900 | 0.0001 | - |
602
+ | 0.6276 | 21950 | 0.0002 | - |
603
+ | 0.6290 | 22000 | 0.0002 | - |
604
+ | 0.6305 | 22050 | 0.0001 | - |
605
+ | 0.6319 | 22100 | 0.0002 | - |
606
+ | 0.6333 | 22150 | 0.0001 | - |
607
+ | 0.6347 | 22200 | 0.0001 | - |
608
+ | 0.6362 | 22250 | 0.0001 | - |
609
+ | 0.6376 | 22300 | 0.0002 | - |
610
+ | 0.6390 | 22350 | 0.0001 | - |
611
+ | 0.6405 | 22400 | 0.0003 | - |
612
+ | 0.6419 | 22450 | 0.0002 | - |
613
+ | 0.6433 | 22500 | 0.0002 | - |
614
+ | 0.6447 | 22550 | 0.0001 | - |
615
+ | 0.6462 | 22600 | 0.0002 | - |
616
+ | 0.6476 | 22650 | 0.0002 | - |
617
+ | 0.6490 | 22700 | 0.0002 | - |
618
+ | 0.6505 | 22750 | 0.0002 | - |
619
+ | 0.6519 | 22800 | 0.0001 | - |
620
+ | 0.6533 | 22850 | 0.0002 | - |
621
+ | 0.6548 | 22900 | 0.0002 | - |
622
+ | 0.6562 | 22950 | 0.0002 | - |
623
+ | 0.6576 | 23000 | 0.0002 | - |
624
+ | 0.6590 | 23050 | 0.0002 | - |
625
+ | 0.6605 | 23100 | 0.0002 | - |
626
+ | 0.6619 | 23150 | 0.0002 | - |
627
+ | 0.6633 | 23200 | 0.0002 | - |
628
+ | 0.6648 | 23250 | 0.0002 | - |
629
+ | 0.6662 | 23300 | 0.0002 | - |
630
+ | 0.6676 | 23350 | 0.0001 | - |
631
+ | 0.6690 | 23400 | 0.0002 | - |
632
+ | 0.6705 | 23450 | 0.0002 | - |
633
+ | 0.6719 | 23500 | 0.0001 | - |
634
+ | 0.6733 | 23550 | 0.0002 | - |
635
+ | 0.6748 | 23600 | 0.0001 | - |
636
+ | 0.6762 | 23650 | 0.0002 | - |
637
+ | 0.6776 | 23700 | 0.0002 | - |
638
+ | 0.6791 | 23750 | 0.0002 | - |
639
+ | 0.6805 | 23800 | 0.0001 | - |
640
+ | 0.6819 | 23850 | 0.0002 | - |
641
+ | 0.6833 | 23900 | 0.0003 | - |
642
+ | 0.6848 | 23950 | 0.0002 | - |
643
+ | 0.6862 | 24000 | 0.0002 | - |
644
+ | 0.6876 | 24050 | 0.0001 | - |
645
+ | 0.6891 | 24100 | 0.0002 | - |
646
+ | 0.6905 | 24150 | 0.0001 | - |
647
+ | 0.6919 | 24200 | 0.0003 | - |
648
+ | 0.6934 | 24250 | 0.0002 | - |
649
+ | 0.6948 | 24300 | 0.0001 | - |
650
+ | 0.6962 | 24350 | 0.0001 | - |
651
+ | 0.6976 | 24400 | 0.0001 | - |
652
+ | 0.6991 | 24450 | 0.0001 | - |
653
+ | 0.7005 | 24500 | 0.0001 | - |
654
+ | 0.7019 | 24550 | 0.0002 | - |
655
+ | 0.7034 | 24600 | 0.0001 | - |
656
+ | 0.7048 | 24650 | 0.0002 | - |
657
+ | 0.7062 | 24700 | 0.0001 | - |
658
+ | 0.7076 | 24750 | 0.0002 | - |
659
+ | 0.7091 | 24800 | 0.0002 | - |
660
+ | 0.7105 | 24850 | 0.0002 | - |
661
+ | 0.7119 | 24900 | 0.0002 | - |
662
+ | 0.7134 | 24950 | 0.0001 | - |
663
+ | 0.7148 | 25000 | 0.0002 | - |
664
+ | 0.7162 | 25050 | 0.0001 | - |
665
+ | 0.7177 | 25100 | 0.0002 | - |
666
+ | 0.7191 | 25150 | 0.0001 | - |
667
+ | 0.7205 | 25200 | 0.0001 | - |
668
+ | 0.7219 | 25250 | 0.0002 | - |
669
+ | 0.7234 | 25300 | 0.0002 | - |
670
+ | 0.7248 | 25350 | 0.0002 | - |
671
+ | 0.7262 | 25400 | 0.0001 | - |
672
+ | 0.7277 | 25450 | 0.0002 | - |
673
+ | 0.7291 | 25500 | 0.0002 | - |
674
+ | 0.7305 | 25550 | 0.0002 | - |
675
+ | 0.7320 | 25600 | 0.0001 | - |
676
+ | 0.7334 | 25650 | 0.0002 | - |
677
+ | 0.7348 | 25700 | 0.0002 | - |
678
+ | 0.7362 | 25750 | 0.0002 | - |
679
+ | 0.7377 | 25800 | 0.0002 | - |
680
+ | 0.7391 | 25850 | 0.0001 | - |
681
+ | 0.7405 | 25900 | 0.0002 | - |
682
+ | 0.7420 | 25950 | 0.0002 | - |
683
+ | 0.7434 | 26000 | 0.0001 | - |
684
+ | 0.7448 | 26050 | 0.0001 | - |
685
+ | 0.7462 | 26100 | 0.0001 | - |
686
+ | 0.7477 | 26150 | 0.0001 | - |
687
+ | 0.7491 | 26200 | 0.0001 | - |
688
+ | 0.7505 | 26250 | 0.0002 | - |
689
+ | 0.7520 | 26300 | 0.0001 | - |
690
+ | 0.7534 | 26350 | 0.0001 | - |
691
+ | 0.7548 | 26400 | 0.0001 | - |
692
+ | 0.7563 | 26450 | 0.0002 | - |
693
+ | 0.7577 | 26500 | 0.0001 | - |
694
+ | 0.7591 | 26550 | 0.0002 | - |
695
+ | 0.7605 | 26600 | 0.0003 | - |
696
+ | 0.7620 | 26650 | 0.0002 | - |
697
+ | 0.7634 | 26700 | 0.0002 | - |
698
+ | 0.7648 | 26750 | 0.0001 | - |
699
+ | 0.7663 | 26800 | 0.0001 | - |
700
+ | 0.7677 | 26850 | 0.0002 | - |
701
+ | 0.7691 | 26900 | 0.0002 | - |
702
+ | 0.7706 | 26950 | 0.0001 | - |
703
+ | 0.7720 | 27000 | 0.0001 | - |
704
+ | 0.7734 | 27050 | 0.0001 | - |
705
+ | 0.7748 | 27100 | 0.0001 | - |
706
+ | 0.7763 | 27150 | 0.0001 | - |
707
+ | 0.7777 | 27200 | 0.0002 | - |
708
+ | 0.7791 | 27250 | 0.0001 | - |
709
+ | 0.7806 | 27300 | 0.0001 | - |
710
+ | 0.7820 | 27350 | 0.0001 | - |
711
+ | 0.7834 | 27400 | 0.0002 | - |
712
+ | 0.7848 | 27450 | 0.0001 | - |
713
+ | 0.7863 | 27500 | 0.0001 | - |
714
+ | 0.7877 | 27550 | 0.0001 | - |
715
+ | 0.7891 | 27600 | 0.0001 | - |
716
+ | 0.7906 | 27650 | 0.0001 | - |
717
+ | 0.7920 | 27700 | 0.0001 | - |
718
+ | 0.7934 | 27750 | 0.0001 | - |
719
+ | 0.7949 | 27800 | 0.0001 | - |
720
+ | 0.7963 | 27850 | 0.0001 | - |
721
+ | 0.7977 | 27900 | 0.0001 | - |
722
+ | 0.7991 | 27950 | 0.0003 | - |
723
+ | 0.8006 | 28000 | 0.0001 | - |
724
+ | 0.8020 | 28050 | 0.0002 | - |
725
+ | 0.8034 | 28100 | 0.0001 | - |
726
+ | 0.8049 | 28150 | 0.0002 | - |
727
+ | 0.8063 | 28200 | 0.0 | - |
728
+ | 0.8077 | 28250 | 0.0001 | - |
729
+ | 0.8091 | 28300 | 0.0001 | - |
730
+ | 0.8106 | 28350 | 0.0001 | - |
731
+ | 0.8120 | 28400 | 0.0001 | - |
732
+ | 0.8134 | 28450 | 0.0002 | - |
733
+ | 0.8149 | 28500 | 0.0001 | - |
734
+ | 0.8163 | 28550 | 0.0001 | - |
735
+ | 0.8177 | 28600 | 0.0001 | - |
736
+ | 0.8192 | 28650 | 0.0001 | - |
737
+ | 0.8206 | 28700 | 0.0001 | - |
738
+ | 0.8220 | 28750 | 0.0002 | - |
739
+ | 0.8234 | 28800 | 0.0002 | - |
740
+ | 0.8249 | 28850 | 0.0002 | - |
741
+ | 0.8263 | 28900 | 0.0001 | - |
742
+ | 0.8277 | 28950 | 0.0002 | - |
743
+ | 0.8292 | 29000 | 0.0001 | - |
744
+ | 0.8306 | 29050 | 0.0002 | - |
745
+ | 0.8320 | 29100 | 0.0001 | - |
746
+ | 0.8335 | 29150 | 0.0001 | - |
747
+ | 0.8349 | 29200 | 0.0001 | - |
748
+ | 0.8363 | 29250 | 0.0001 | - |
749
+ | 0.8377 | 29300 | 0.0001 | - |
750
+ | 0.8392 | 29350 | 0.0001 | - |
751
+ | 0.8406 | 29400 | 0.0001 | - |
752
+ | 0.8420 | 29450 | 0.0002 | - |
753
+ | 0.8435 | 29500 | 0.0001 | - |
754
+ | 0.8449 | 29550 | 0.0001 | - |
755
+ | 0.8463 | 29600 | 0.0001 | - |
756
+ | 0.8477 | 29650 | 0.0001 | - |
757
+ | 0.8492 | 29700 | 0.0001 | - |
758
+ | 0.8506 | 29750 | 0.0002 | - |
759
+ | 0.8520 | 29800 | 0.0002 | - |
760
+ | 0.8535 | 29850 | 0.0001 | - |
761
+ | 0.8549 | 29900 | 0.0002 | - |
762
+ | 0.8563 | 29950 | 0.0002 | - |
763
+ | 0.8578 | 30000 | 0.0002 | - |
764
+ | 0.8592 | 30050 | 0.0001 | - |
765
+ | 0.8606 | 30100 | 0.0002 | - |
766
+ | 0.8620 | 30150 | 0.0002 | - |
767
+ | 0.8635 | 30200 | 0.0003 | - |
768
+ | 0.8649 | 30250 | 0.0001 | - |
769
+ | 0.8663 | 30300 | 0.0001 | - |
770
+ | 0.8678 | 30350 | 0.0001 | - |
771
+ | 0.8692 | 30400 | 0.0001 | - |
772
+ | 0.8706 | 30450 | 0.0002 | - |
773
+ | 0.8721 | 30500 | 0.0001 | - |
774
+ | 0.8735 | 30550 | 0.0001 | - |
775
+ | 0.8749 | 30600 | 0.0001 | - |
776
+ | 0.8763 | 30650 | 0.0002 | - |
777
+ | 0.8778 | 30700 | 0.0002 | - |
778
+ | 0.8792 | 30750 | 0.0001 | - |
779
+ | 0.8806 | 30800 | 0.0002 | - |
780
+ | 0.8821 | 30850 | 0.0002 | - |
781
+ | 0.8835 | 30900 | 0.0001 | - |
782
+ | 0.8849 | 30950 | 0.0002 | - |
783
+ | 0.8863 | 31000 | 0.0002 | - |
784
+ | 0.8878 | 31050 | 0.0002 | - |
785
+ | 0.8892 | 31100 | 0.0001 | - |
786
+ | 0.8906 | 31150 | 0.0001 | - |
787
+ | 0.8921 | 31200 | 0.0001 | - |
788
+ | 0.8935 | 31250 | 0.0001 | - |
789
+ | 0.8949 | 31300 | 0.0002 | - |
790
+ | 0.8964 | 31350 | 0.0002 | - |
791
+ | 0.8978 | 31400 | 0.0001 | - |
792
+ | 0.8992 | 31450 | 0.0001 | - |
793
+ | 0.9006 | 31500 | 0.0002 | - |
794
+ | 0.9021 | 31550 | 0.0002 | - |
795
+ | 0.9035 | 31600 | 0.0001 | - |
796
+ | 0.9049 | 31650 | 0.0002 | - |
797
+ | 0.9064 | 31700 | 0.0001 | - |
798
+ | 0.9078 | 31750 | 0.0001 | - |
799
+ | 0.9092 | 31800 | 0.0001 | - |
800
+ | 0.9107 | 31850 | 0.0002 | - |
801
+ | 0.9121 | 31900 | 0.0002 | - |
802
+ | 0.9135 | 31950 | 0.0001 | - |
803
+ | 0.9149 | 32000 | 0.0001 | - |
804
+ | 0.9164 | 32050 | 0.0001 | - |
805
+ | 0.9178 | 32100 | 0.0001 | - |
806
+ | 0.9192 | 32150 | 0.0001 | - |
807
+ | 0.9207 | 32200 | 0.0001 | - |
808
+ | 0.9221 | 32250 | 0.0001 | - |
809
+ | 0.9235 | 32300 | 0.0002 | - |
810
+ | 0.9249 | 32350 | 0.0001 | - |
811
+ | 0.9264 | 32400 | 0.0001 | - |
812
+ | 0.9278 | 32450 | 0.0002 | - |
813
+ | 0.9292 | 32500 | 0.0001 | - |
814
+ | 0.9307 | 32550 | 0.0001 | - |
815
+ | 0.9321 | 32600 | 0.0002 | - |
816
+ | 0.9335 | 32650 | 0.0001 | - |
817
+ | 0.9350 | 32700 | 0.0001 | - |
818
+ | 0.9364 | 32750 | 0.0001 | - |
819
+ | 0.9378 | 32800 | 0.0001 | - |
820
+ | 0.9392 | 32850 | 0.0001 | - |
821
+ | 0.9407 | 32900 | 0.0002 | - |
822
+ | 0.9421 | 32950 | 0.0002 | - |
823
+ | 0.9435 | 33000 | 0.0 | - |
824
+ | 0.9450 | 33050 | 0.0001 | - |
825
+ | 0.9464 | 33100 | 0.0001 | - |
826
+ | 0.9478 | 33150 | 0.0001 | - |
827
+ | 0.9492 | 33200 | 0.0001 | - |
828
+ | 0.9507 | 33250 | 0.0001 | - |
829
+ | 0.9521 | 33300 | 0.0001 | - |
830
+ | 0.9535 | 33350 | 0.0002 | - |
831
+ | 0.9550 | 33400 | 0.0001 | - |
832
+ | 0.9564 | 33450 | 0.0001 | - |
833
+ | 0.9578 | 33500 | 0.0002 | - |
834
+ | 0.9593 | 33550 | 0.0001 | - |
835
+ | 0.9607 | 33600 | 0.0001 | - |
836
+ | 0.9621 | 33650 | 0.0002 | - |
837
+ | 0.9635 | 33700 | 0.0002 | - |
838
+ | 0.9650 | 33750 | 0.0001 | - |
839
+ | 0.9664 | 33800 | 0.0001 | - |
840
+ | 0.9678 | 33850 | 0.0001 | - |
841
+ | 0.9693 | 33900 | 0.0001 | - |
842
+ | 0.9707 | 33950 | 0.0 | - |
843
+ | 0.9721 | 34000 | 0.0002 | - |
844
+ | 0.9736 | 34050 | 0.0001 | - |
845
+ | 0.9750 | 34100 | 0.0001 | - |
846
+ | 0.9764 | 34150 | 0.0001 | - |
847
+ | 0.9778 | 34200 | 0.0001 | - |
848
+ | 0.9793 | 34250 | 0.0002 | - |
849
+ | 0.9807 | 34300 | 0.0002 | - |
850
+ | 0.9821 | 34350 | 0.0001 | - |
851
+ | 0.9836 | 34400 | 0.0001 | - |
852
+ | 0.9850 | 34450 | 0.0001 | - |
853
+ | 0.9864 | 34500 | 0.0001 | - |
854
+ | 0.9878 | 34550 | 0.0001 | - |
855
+ | 0.9893 | 34600 | 0.0001 | - |
856
+ | 0.9907 | 34650 | 0.0001 | - |
857
+ | 0.9921 | 34700 | 0.0001 | - |
858
+ | 0.9936 | 34750 | 0.0001 | - |
859
+ | 0.9950 | 34800 | 0.0001 | - |
860
+ | 0.9964 | 34850 | 0.0001 | - |
861
+ | 0.9979 | 34900 | 0.0002 | - |
862
+ | 0.9993 | 34950 | 0.0002 | - |
863
+ | **1.0** | **34975** | **-** | **0.0221** |
864
+
865
+ * The bold row denotes the saved checkpoint.
866
+ ### Framework Versions
867
+ - Python: 3.11.9
868
+ - SetFit: 1.0.3
869
+ - Sentence Transformers: 2.7.0
870
+ - Transformers: 4.42.4
871
+ - PyTorch: 2.4.0+cu121
872
+ - Datasets: 2.21.0
873
+ - Tokenizers: 0.19.1
874
+
875
+ ## Citation
876
+
877
+ ### BibTeX
878
+ ```bibtex
879
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
880
+ doi = {10.48550/ARXIV.2209.11055},
881
+ url = {https://arxiv.org/abs/2209.11055},
882
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
883
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
884
+ title = {Efficient Few-Shot Learning Without Prompts},
885
+ publisher = {arXiv},
886
+ year = {2022},
887
+ copyright = {Creative Commons Attribution 4.0 International}
888
+ }
889
+ ```
890
+
891
+ <!--
892
+ ## Glossary
893
+
894
+ *Clearly define terms in order to be accessible across audiences.*
895
+ -->
896
+
897
+ <!--
898
+ ## Model Card Authors
899
+
900
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
901
+ -->
902
+
903
+ <!--
904
+ ## Model Card Contact
905
+
906
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
907
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_34975",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.42.4",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "Tablejoin",
4
+ "Rejection",
5
+ "Aggregation",
6
+ "Lookup",
7
+ "Generalreply",
8
+ "Viewtables",
9
+ "Lookup_1"
10
+ ],
11
+ "normalize_embeddings": false
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d96f6cc7d96dfb32efeaaec6304fbc51dc5e79c00c8f589aa159886b97ad6ac
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89d34b19e91e0d7cb8fe6cc0a40a0449f52546baef62f4bc6c0ed53dba58721d
3
+ size 22735
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff