Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +907 -0
- config.json +31 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: What tables are included in the starhub_data_asset database that relate to
|
14 |
+
customer complaints?
|
15 |
+
- text: What are the tables that I can access in the starhub_data_asset database?
|
16 |
+
- text: Can I have avg Cost_Efficiency
|
17 |
+
- text: Analyze product category revenue impact.
|
18 |
+
- text: Retrieve data_asset_kpi_ma_product details.
|
19 |
+
inference: true
|
20 |
+
model-index:
|
21 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: text-classification
|
25 |
+
name: Text Classification
|
26 |
+
dataset:
|
27 |
+
name: Unknown
|
28 |
+
type: unknown
|
29 |
+
split: test
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 0.9914529914529915
|
33 |
+
name: Accuracy
|
34 |
+
---
|
35 |
+
|
36 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
37 |
+
|
38 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
39 |
+
|
40 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
41 |
+
|
42 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
43 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
- **Model Type:** SetFit
|
49 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
50 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
51 |
+
- **Maximum Sequence Length:** 512 tokens
|
52 |
+
- **Number of Classes:** 7 classes
|
53 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
60 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
61 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
+
|
63 |
+
### Model Labels
|
64 |
+
| Label | Examples |
|
65 |
+
|:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
+
| Generalreply | <ul><li>'Can you recommend a good movie to watch?'</li><li>"Oh, that's a tough one! There are so many good memories to choose from. But if I had to pick just one, I think it would be spending summers at my grandparent's house. We would play board games, make homemade ice cream, and have big family dinners. It was always so much fun!"</li><li>'Oh, I love reading books! My favorite genre is definitely fantasy. How about you? What kind of books do you like to read?'</li></ul> |
|
67 |
+
| Lookup_1 | <ul><li>'Get me data_asset_kpi_cf cash flow.'</li><li>'Display data_asset_001_pcc for electronics category.'</li><li>'Calculate Gross Profit Margin Trends.'</li></ul> |
|
68 |
+
| Lookup | <ul><li>"What are the products in the 'Clothing' category?"</li><li>"Get me the phone numbers of customers with the last name 'Johnson'."</li><li>"Can you filter by employees who have the last name 'Brown'?"</li></ul> |
|
69 |
+
| Aggregation | <ul><li>'Get me max Accumulated Amortisation and Impairment.'</li><li>'Can I have mode of Revenue'</li><li>'Show me count company_name'</li></ul> |
|
70 |
+
| Tablejoin | <ul><li>'Could you merge the Orders and Employees tables to identify which employees have processed high-value orders?'</li><li>'Could you connect the Products and Orders tables to analyze sales data by product category?'</li><li>'How can I connect the Customers and Orders tables to find customers who made purchases during a specific promotion?'</li></ul> |
|
71 |
+
| Viewtables | <ul><li>'What are the tables in the starhub_data_asset database that a user can join to perform a sales analysis?'</li><li>'What tables can be found in the asset-tracking section of the starhub_data_asset database?'</li><li>'What tables exist in the starhub_data_asset database?'</li></ul> |
|
72 |
+
| Rejection | <ul><li>"Let's avoid creating any new data sets."</li><li>"I'd prefer to avoid generating data fields."</li><li>"I'm not interested in filtering this collection."</li></ul> |
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
### Metrics
|
77 |
+
| Label | Accuracy |
|
78 |
+
|:--------|:---------|
|
79 |
+
| **all** | 0.9915 |
|
80 |
+
|
81 |
+
## Uses
|
82 |
+
|
83 |
+
### Direct Use for Inference
|
84 |
+
|
85 |
+
First install the SetFit library:
|
86 |
+
|
87 |
+
```bash
|
88 |
+
pip install setfit
|
89 |
+
```
|
90 |
+
|
91 |
+
Then you can load this model and run inference.
|
92 |
+
|
93 |
+
```python
|
94 |
+
from setfit import SetFitModel
|
95 |
+
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SetFitModel.from_pretrained("nazhan/bge-small-en-v1.5-brahmaputra-iter-10")
|
98 |
+
# Run inference
|
99 |
+
preds = model("Can I have avg Cost_Efficiency")
|
100 |
+
```
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Downstream Use
|
104 |
+
|
105 |
+
*List how someone could finetune this model on their own dataset.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
### Out-of-Scope Use
|
110 |
+
|
111 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
## Bias, Risks and Limitations
|
116 |
+
|
117 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Recommendations
|
122 |
+
|
123 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
## Training Details
|
127 |
+
|
128 |
+
### Training Set Metrics
|
129 |
+
| Training set | Min | Median | Max |
|
130 |
+
|:-------------|:----|:-------|:----|
|
131 |
+
| Word count | 1 | 8.6563 | 62 |
|
132 |
+
|
133 |
+
| Label | Training Sample Count |
|
134 |
+
|:-------------|:----------------------|
|
135 |
+
| Tablejoin | 129 |
|
136 |
+
| Rejection | 77 |
|
137 |
+
| Aggregation | 282 |
|
138 |
+
| Lookup | 60 |
|
139 |
+
| Generalreply | 63 |
|
140 |
+
| Viewtables | 74 |
|
141 |
+
| Lookup_1 | 150 |
|
142 |
+
|
143 |
+
### Training Hyperparameters
|
144 |
+
- batch_size: (16, 16)
|
145 |
+
- num_epochs: (1, 1)
|
146 |
+
- max_steps: -1
|
147 |
+
- sampling_strategy: oversampling
|
148 |
+
- body_learning_rate: (2e-05, 1e-05)
|
149 |
+
- head_learning_rate: 0.01
|
150 |
+
- loss: CosineSimilarityLoss
|
151 |
+
- distance_metric: cosine_distance
|
152 |
+
- margin: 0.25
|
153 |
+
- end_to_end: False
|
154 |
+
- use_amp: False
|
155 |
+
- warmup_proportion: 0.1
|
156 |
+
- seed: 42
|
157 |
+
- eval_max_steps: -1
|
158 |
+
- load_best_model_at_end: True
|
159 |
+
|
160 |
+
### Training Results
|
161 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
162 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
163 |
+
| 0.0000 | 1 | 0.2038 | - |
|
164 |
+
| 0.0014 | 50 | 0.2019 | - |
|
165 |
+
| 0.0029 | 100 | 0.1983 | - |
|
166 |
+
| 0.0043 | 150 | 0.206 | - |
|
167 |
+
| 0.0057 | 200 | 0.2268 | - |
|
168 |
+
| 0.0071 | 250 | 0.2025 | - |
|
169 |
+
| 0.0086 | 300 | 0.2041 | - |
|
170 |
+
| 0.0100 | 350 | 0.1426 | - |
|
171 |
+
| 0.0114 | 400 | 0.1513 | - |
|
172 |
+
| 0.0129 | 450 | 0.1215 | - |
|
173 |
+
| 0.0143 | 500 | 0.1426 | - |
|
174 |
+
| 0.0157 | 550 | 0.0859 | - |
|
175 |
+
| 0.0172 | 600 | 0.0486 | - |
|
176 |
+
| 0.0186 | 650 | 0.0378 | - |
|
177 |
+
| 0.0200 | 700 | 0.0519 | - |
|
178 |
+
| 0.0214 | 750 | 0.0717 | - |
|
179 |
+
| 0.0229 | 800 | 0.1161 | - |
|
180 |
+
| 0.0243 | 850 | 0.0771 | - |
|
181 |
+
| 0.0257 | 900 | 0.074 | - |
|
182 |
+
| 0.0272 | 950 | 0.0567 | - |
|
183 |
+
| 0.0286 | 1000 | 0.0223 | - |
|
184 |
+
| 0.0300 | 1050 | 0.0266 | - |
|
185 |
+
| 0.0315 | 1100 | 0.0261 | - |
|
186 |
+
| 0.0329 | 1150 | 0.0333 | - |
|
187 |
+
| 0.0343 | 1200 | 0.0107 | - |
|
188 |
+
| 0.0357 | 1250 | 0.0123 | - |
|
189 |
+
| 0.0372 | 1300 | 0.0193 | - |
|
190 |
+
| 0.0386 | 1350 | 0.0039 | - |
|
191 |
+
| 0.0400 | 1400 | 0.0079 | - |
|
192 |
+
| 0.0415 | 1450 | 0.0035 | - |
|
193 |
+
| 0.0429 | 1500 | 0.003 | - |
|
194 |
+
| 0.0443 | 1550 | 0.0041 | - |
|
195 |
+
| 0.0457 | 1600 | 0.0038 | - |
|
196 |
+
| 0.0472 | 1650 | 0.002 | - |
|
197 |
+
| 0.0486 | 1700 | 0.0028 | - |
|
198 |
+
| 0.0500 | 1750 | 0.0056 | - |
|
199 |
+
| 0.0515 | 1800 | 0.0035 | - |
|
200 |
+
| 0.0529 | 1850 | 0.0027 | - |
|
201 |
+
| 0.0543 | 1900 | 0.0028 | - |
|
202 |
+
| 0.0558 | 1950 | 0.0028 | - |
|
203 |
+
| 0.0572 | 2000 | 0.0019 | - |
|
204 |
+
| 0.0586 | 2050 | 0.0046 | - |
|
205 |
+
| 0.0600 | 2100 | 0.0017 | - |
|
206 |
+
| 0.0615 | 2150 | 0.0016 | - |
|
207 |
+
| 0.0629 | 2200 | 0.0022 | - |
|
208 |
+
| 0.0643 | 2250 | 0.002 | - |
|
209 |
+
| 0.0658 | 2300 | 0.0029 | - |
|
210 |
+
| 0.0672 | 2350 | 0.0032 | - |
|
211 |
+
| 0.0686 | 2400 | 0.0018 | - |
|
212 |
+
| 0.0701 | 2450 | 0.0015 | - |
|
213 |
+
| 0.0715 | 2500 | 0.0015 | - |
|
214 |
+
| 0.0729 | 2550 | 0.0016 | - |
|
215 |
+
| 0.0743 | 2600 | 0.0012 | - |
|
216 |
+
| 0.0758 | 2650 | 0.0014 | - |
|
217 |
+
| 0.0772 | 2700 | 0.0015 | - |
|
218 |
+
| 0.0786 | 2750 | 0.0018 | - |
|
219 |
+
| 0.0801 | 2800 | 0.0012 | - |
|
220 |
+
| 0.0815 | 2850 | 0.0009 | - |
|
221 |
+
| 0.0829 | 2900 | 0.001 | - |
|
222 |
+
| 0.0843 | 2950 | 0.0011 | - |
|
223 |
+
| 0.0858 | 3000 | 0.0011 | - |
|
224 |
+
| 0.0872 | 3050 | 0.001 | - |
|
225 |
+
| 0.0886 | 3100 | 0.0012 | - |
|
226 |
+
| 0.0901 | 3150 | 0.0006 | - |
|
227 |
+
| 0.0915 | 3200 | 0.0013 | - |
|
228 |
+
| 0.0929 | 3250 | 0.0007 | - |
|
229 |
+
| 0.0944 | 3300 | 0.0007 | - |
|
230 |
+
| 0.0958 | 3350 | 0.0009 | - |
|
231 |
+
| 0.0972 | 3400 | 0.0008 | - |
|
232 |
+
| 0.0986 | 3450 | 0.0005 | - |
|
233 |
+
| 0.1001 | 3500 | 0.001 | - |
|
234 |
+
| 0.1015 | 3550 | 0.001 | - |
|
235 |
+
| 0.1029 | 3600 | 0.0008 | - |
|
236 |
+
| 0.1044 | 3650 | 0.0007 | - |
|
237 |
+
| 0.1058 | 3700 | 0.0006 | - |
|
238 |
+
| 0.1072 | 3750 | 0.0009 | - |
|
239 |
+
| 0.1086 | 3800 | 0.0012 | - |
|
240 |
+
| 0.1101 | 3850 | 0.0007 | - |
|
241 |
+
| 0.1115 | 3900 | 0.0008 | - |
|
242 |
+
| 0.1129 | 3950 | 0.0009 | - |
|
243 |
+
| 0.1144 | 4000 | 0.0007 | - |
|
244 |
+
| 0.1158 | 4050 | 0.0007 | - |
|
245 |
+
| 0.1172 | 4100 | 0.0007 | - |
|
246 |
+
| 0.1187 | 4150 | 0.0006 | - |
|
247 |
+
| 0.1201 | 4200 | 0.0006 | - |
|
248 |
+
| 0.1215 | 4250 | 0.0011 | - |
|
249 |
+
| 0.1229 | 4300 | 0.0012 | - |
|
250 |
+
| 0.1244 | 4350 | 0.0007 | - |
|
251 |
+
| 0.1258 | 4400 | 0.0007 | - |
|
252 |
+
| 0.1272 | 4450 | 0.0006 | - |
|
253 |
+
| 0.1287 | 4500 | 0.0005 | - |
|
254 |
+
| 0.1301 | 4550 | 0.0008 | - |
|
255 |
+
| 0.1315 | 4600 | 0.0006 | - |
|
256 |
+
| 0.1330 | 4650 | 0.0007 | - |
|
257 |
+
| 0.1344 | 4700 | 0.0006 | - |
|
258 |
+
| 0.1358 | 4750 | 0.0005 | - |
|
259 |
+
| 0.1372 | 4800 | 0.0006 | - |
|
260 |
+
| 0.1387 | 4850 | 0.0008 | - |
|
261 |
+
| 0.1401 | 4900 | 0.0008 | - |
|
262 |
+
| 0.1415 | 4950 | 0.0004 | - |
|
263 |
+
| 0.1430 | 5000 | 0.0005 | - |
|
264 |
+
| 0.1444 | 5050 | 0.0005 | - |
|
265 |
+
| 0.1458 | 5100 | 0.0007 | - |
|
266 |
+
| 0.1472 | 5150 | 0.0006 | - |
|
267 |
+
| 0.1487 | 5200 | 0.0006 | - |
|
268 |
+
| 0.1501 | 5250 | 0.0004 | - |
|
269 |
+
| 0.1515 | 5300 | 0.0005 | - |
|
270 |
+
| 0.1530 | 5350 | 0.0007 | - |
|
271 |
+
| 0.1544 | 5400 | 0.0007 | - |
|
272 |
+
| 0.1558 | 5450 | 0.0005 | - |
|
273 |
+
| 0.1573 | 5500 | 0.0007 | - |
|
274 |
+
| 0.1587 | 5550 | 0.0004 | - |
|
275 |
+
| 0.1601 | 5600 | 0.0004 | - |
|
276 |
+
| 0.1615 | 5650 | 0.0006 | - |
|
277 |
+
| 0.1630 | 5700 | 0.0005 | - |
|
278 |
+
| 0.1644 | 5750 | 0.0006 | - |
|
279 |
+
| 0.1658 | 5800 | 0.0004 | - |
|
280 |
+
| 0.1673 | 5850 | 0.0005 | - |
|
281 |
+
| 0.1687 | 5900 | 0.0007 | - |
|
282 |
+
| 0.1701 | 5950 | 0.0005 | - |
|
283 |
+
| 0.1716 | 6000 | 0.0005 | - |
|
284 |
+
| 0.1730 | 6050 | 0.0003 | - |
|
285 |
+
| 0.1744 | 6100 | 0.0003 | - |
|
286 |
+
| 0.1758 | 6150 | 0.0005 | - |
|
287 |
+
| 0.1773 | 6200 | 0.0007 | - |
|
288 |
+
| 0.1787 | 6250 | 0.0004 | - |
|
289 |
+
| 0.1801 | 6300 | 0.0006 | - |
|
290 |
+
| 0.1816 | 6350 | 0.0004 | - |
|
291 |
+
| 0.1830 | 6400 | 0.0003 | - |
|
292 |
+
| 0.1844 | 6450 | 0.0005 | - |
|
293 |
+
| 0.1858 | 6500 | 0.0004 | - |
|
294 |
+
| 0.1873 | 6550 | 0.0006 | - |
|
295 |
+
| 0.1887 | 6600 | 0.0005 | - |
|
296 |
+
| 0.1901 | 6650 | 0.0005 | - |
|
297 |
+
| 0.1916 | 6700 | 0.0003 | - |
|
298 |
+
| 0.1930 | 6750 | 0.0004 | - |
|
299 |
+
| 0.1944 | 6800 | 0.0004 | - |
|
300 |
+
| 0.1959 | 6850 | 0.0004 | - |
|
301 |
+
| 0.1973 | 6900 | 0.0003 | - |
|
302 |
+
| 0.1987 | 6950 | 0.0004 | - |
|
303 |
+
| 0.2001 | 7000 | 0.0004 | - |
|
304 |
+
| 0.2016 | 7050 | 0.0003 | - |
|
305 |
+
| 0.2030 | 7100 | 0.0003 | - |
|
306 |
+
| 0.2044 | 7150 | 0.0005 | - |
|
307 |
+
| 0.2059 | 7200 | 0.0004 | - |
|
308 |
+
| 0.2073 | 7250 | 0.0003 | - |
|
309 |
+
| 0.2087 | 7300 | 0.0002 | - |
|
310 |
+
| 0.2102 | 7350 | 0.0003 | - |
|
311 |
+
| 0.2116 | 7400 | 0.0004 | - |
|
312 |
+
| 0.2130 | 7450 | 0.0006 | - |
|
313 |
+
| 0.2144 | 7500 | 0.0003 | - |
|
314 |
+
| 0.2159 | 7550 | 0.0002 | - |
|
315 |
+
| 0.2173 | 7600 | 0.0004 | - |
|
316 |
+
| 0.2187 | 7650 | 0.0003 | - |
|
317 |
+
| 0.2202 | 7700 | 0.0005 | - |
|
318 |
+
| 0.2216 | 7750 | 0.0004 | - |
|
319 |
+
| 0.2230 | 7800 | 0.0004 | - |
|
320 |
+
| 0.2244 | 7850 | 0.0004 | - |
|
321 |
+
| 0.2259 | 7900 | 0.0003 | - |
|
322 |
+
| 0.2273 | 7950 | 0.0005 | - |
|
323 |
+
| 0.2287 | 8000 | 0.0003 | - |
|
324 |
+
| 0.2302 | 8050 | 0.0003 | - |
|
325 |
+
| 0.2316 | 8100 | 0.0003 | - |
|
326 |
+
| 0.2330 | 8150 | 0.0002 | - |
|
327 |
+
| 0.2345 | 8200 | 0.0002 | - |
|
328 |
+
| 0.2359 | 8250 | 0.0004 | - |
|
329 |
+
| 0.2373 | 8300 | 0.0004 | - |
|
330 |
+
| 0.2387 | 8350 | 0.0004 | - |
|
331 |
+
| 0.2402 | 8400 | 0.0003 | - |
|
332 |
+
| 0.2416 | 8450 | 0.0002 | - |
|
333 |
+
| 0.2430 | 8500 | 0.0002 | - |
|
334 |
+
| 0.2445 | 8550 | 0.0003 | - |
|
335 |
+
| 0.2459 | 8600 | 0.0004 | - |
|
336 |
+
| 0.2473 | 8650 | 0.0004 | - |
|
337 |
+
| 0.2487 | 8700 | 0.0003 | - |
|
338 |
+
| 0.2502 | 8750 | 0.0002 | - |
|
339 |
+
| 0.2516 | 8800 | 0.0003 | - |
|
340 |
+
| 0.2530 | 8850 | 0.0003 | - |
|
341 |
+
| 0.2545 | 8900 | 0.0004 | - |
|
342 |
+
| 0.2559 | 8950 | 0.0003 | - |
|
343 |
+
| 0.2573 | 9000 | 0.0002 | - |
|
344 |
+
| 0.2588 | 9050 | 0.0003 | - |
|
345 |
+
| 0.2602 | 9100 | 0.0003 | - |
|
346 |
+
| 0.2616 | 9150 | 0.0003 | - |
|
347 |
+
| 0.2630 | 9200 | 0.0003 | - |
|
348 |
+
| 0.2645 | 9250 | 0.0002 | - |
|
349 |
+
| 0.2659 | 9300 | 0.0002 | - |
|
350 |
+
| 0.2673 | 9350 | 0.0003 | - |
|
351 |
+
| 0.2688 | 9400 | 0.0552 | - |
|
352 |
+
| 0.2702 | 9450 | 0.0003 | - |
|
353 |
+
| 0.2716 | 9500 | 0.0003 | - |
|
354 |
+
| 0.2731 | 9550 | 0.0004 | - |
|
355 |
+
| 0.2745 | 9600 | 0.0004 | - |
|
356 |
+
| 0.2759 | 9650 | 0.0005 | - |
|
357 |
+
| 0.2773 | 9700 | 0.0003 | - |
|
358 |
+
| 0.2788 | 9750 | 0.0003 | - |
|
359 |
+
| 0.2802 | 9800 | 0.0003 | - |
|
360 |
+
| 0.2816 | 9850 | 0.0003 | - |
|
361 |
+
| 0.2831 | 9900 | 0.0004 | - |
|
362 |
+
| 0.2845 | 9950 | 0.0003 | - |
|
363 |
+
| 0.2859 | 10000 | 0.0003 | - |
|
364 |
+
| 0.2873 | 10050 | 0.0004 | - |
|
365 |
+
| 0.2888 | 10100 | 0.0005 | - |
|
366 |
+
| 0.2902 | 10150 | 0.0003 | - |
|
367 |
+
| 0.2916 | 10200 | 0.0004 | - |
|
368 |
+
| 0.2931 | 10250 | 0.0002 | - |
|
369 |
+
| 0.2945 | 10300 | 0.0005 | - |
|
370 |
+
| 0.2959 | 10350 | 0.0003 | - |
|
371 |
+
| 0.2974 | 10400 | 0.0003 | - |
|
372 |
+
| 0.2988 | 10450 | 0.0002 | - |
|
373 |
+
| 0.3002 | 10500 | 0.0003 | - |
|
374 |
+
| 0.3016 | 10550 | 0.0004 | - |
|
375 |
+
| 0.3031 | 10600 | 0.0003 | - |
|
376 |
+
| 0.3045 | 10650 | 0.0003 | - |
|
377 |
+
| 0.3059 | 10700 | 0.0004 | - |
|
378 |
+
| 0.3074 | 10750 | 0.0003 | - |
|
379 |
+
| 0.3088 | 10800 | 0.0003 | - |
|
380 |
+
| 0.3102 | 10850 | 0.0003 | - |
|
381 |
+
| 0.3117 | 10900 | 0.0002 | - |
|
382 |
+
| 0.3131 | 10950 | 0.0005 | - |
|
383 |
+
| 0.3145 | 11000 | 0.0003 | - |
|
384 |
+
| 0.3159 | 11050 | 0.0002 | - |
|
385 |
+
| 0.3174 | 11100 | 0.0003 | - |
|
386 |
+
| 0.3188 | 11150 | 0.0004 | - |
|
387 |
+
| 0.3202 | 11200 | 0.0004 | - |
|
388 |
+
| 0.3217 | 11250 | 0.0002 | - |
|
389 |
+
| 0.3231 | 11300 | 0.0003 | - |
|
390 |
+
| 0.3245 | 11350 | 0.0003 | - |
|
391 |
+
| 0.3259 | 11400 | 0.0003 | - |
|
392 |
+
| 0.3274 | 11450 | 0.0004 | - |
|
393 |
+
| 0.3288 | 11500 | 0.0004 | - |
|
394 |
+
| 0.3302 | 11550 | 0.0003 | - |
|
395 |
+
| 0.3317 | 11600 | 0.0003 | - |
|
396 |
+
| 0.3331 | 11650 | 0.0002 | - |
|
397 |
+
| 0.3345 | 11700 | 0.0004 | - |
|
398 |
+
| 0.3360 | 11750 | 0.0002 | - |
|
399 |
+
| 0.3374 | 11800 | 0.0003 | - |
|
400 |
+
| 0.3388 | 11850 | 0.0002 | - |
|
401 |
+
| 0.3402 | 11900 | 0.0003 | - |
|
402 |
+
| 0.3417 | 11950 | 0.0002 | - |
|
403 |
+
| 0.3431 | 12000 | 0.0004 | - |
|
404 |
+
| 0.3445 | 12050 | 0.0003 | - |
|
405 |
+
| 0.3460 | 12100 | 0.0004 | - |
|
406 |
+
| 0.3474 | 12150 | 0.0005 | - |
|
407 |
+
| 0.3488 | 12200 | 0.0004 | - |
|
408 |
+
| 0.3503 | 12250 | 0.0004 | - |
|
409 |
+
| 0.3517 | 12300 | 0.0002 | - |
|
410 |
+
| 0.3531 | 12350 | 0.0002 | - |
|
411 |
+
| 0.3545 | 12400 | 0.0004 | - |
|
412 |
+
| 0.3560 | 12450 | 0.0002 | - |
|
413 |
+
| 0.3574 | 12500 | 0.0002 | - |
|
414 |
+
| 0.3588 | 12550 | 0.0003 | - |
|
415 |
+
| 0.3603 | 12600 | 0.0005 | - |
|
416 |
+
| 0.3617 | 12650 | 0.0003 | - |
|
417 |
+
| 0.3631 | 12700 | 0.0003 | - |
|
418 |
+
| 0.3645 | 12750 | 0.0002 | - |
|
419 |
+
| 0.3660 | 12800 | 0.0003 | - |
|
420 |
+
| 0.3674 | 12850 | 0.0002 | - |
|
421 |
+
| 0.3688 | 12900 | 0.0002 | - |
|
422 |
+
| 0.3703 | 12950 | 0.0001 | - |
|
423 |
+
| 0.3717 | 13000 | 0.0002 | - |
|
424 |
+
| 0.3731 | 13050 | 0.0003 | - |
|
425 |
+
| 0.3746 | 13100 | 0.0003 | - |
|
426 |
+
| 0.3760 | 13150 | 0.0002 | - |
|
427 |
+
| 0.3774 | 13200 | 0.0004 | - |
|
428 |
+
| 0.3788 | 13250 | 0.0003 | - |
|
429 |
+
| 0.3803 | 13300 | 0.0002 | - |
|
430 |
+
| 0.3817 | 13350 | 0.0003 | - |
|
431 |
+
| 0.3831 | 13400 | 0.0003 | - |
|
432 |
+
| 0.3846 | 13450 | 0.0003 | - |
|
433 |
+
| 0.3860 | 13500 | 0.0002 | - |
|
434 |
+
| 0.3874 | 13550 | 0.0002 | - |
|
435 |
+
| 0.3888 | 13600 | 0.0003 | - |
|
436 |
+
| 0.3903 | 13650 | 0.0003 | - |
|
437 |
+
| 0.3917 | 13700 | 0.0002 | - |
|
438 |
+
| 0.3931 | 13750 | 0.0002 | - |
|
439 |
+
| 0.3946 | 13800 | 0.0002 | - |
|
440 |
+
| 0.3960 | 13850 | 0.0004 | - |
|
441 |
+
| 0.3974 | 13900 | 0.0003 | - |
|
442 |
+
| 0.3989 | 13950 | 0.0002 | - |
|
443 |
+
| 0.4003 | 14000 | 0.0003 | - |
|
444 |
+
| 0.4017 | 14050 | 0.0001 | - |
|
445 |
+
| 0.4031 | 14100 | 0.0002 | - |
|
446 |
+
| 0.4046 | 14150 | 0.0001 | - |
|
447 |
+
| 0.4060 | 14200 | 0.0002 | - |
|
448 |
+
| 0.4074 | 14250 | 0.0002 | - |
|
449 |
+
| 0.4089 | 14300 | 0.0002 | - |
|
450 |
+
| 0.4103 | 14350 | 0.0003 | - |
|
451 |
+
| 0.4117 | 14400 | 0.0003 | - |
|
452 |
+
| 0.4132 | 14450 | 0.0002 | - |
|
453 |
+
| 0.4146 | 14500 | 0.0003 | - |
|
454 |
+
| 0.4160 | 14550 | 0.0003 | - |
|
455 |
+
| 0.4174 | 14600 | 0.0002 | - |
|
456 |
+
| 0.4189 | 14650 | 0.0002 | - |
|
457 |
+
| 0.4203 | 14700 | 0.0003 | - |
|
458 |
+
| 0.4217 | 14750 | 0.0003 | - |
|
459 |
+
| 0.4232 | 14800 | 0.0002 | - |
|
460 |
+
| 0.4246 | 14850 | 0.0003 | - |
|
461 |
+
| 0.4260 | 14900 | 0.0003 | - |
|
462 |
+
| 0.4274 | 14950 | 0.0003 | - |
|
463 |
+
| 0.4289 | 15000 | 0.0002 | - |
|
464 |
+
| 0.4303 | 15050 | 0.0002 | - |
|
465 |
+
| 0.4317 | 15100 | 0.0002 | - |
|
466 |
+
| 0.4332 | 15150 | 0.0004 | - |
|
467 |
+
| 0.4346 | 15200 | 0.0003 | - |
|
468 |
+
| 0.4360 | 15250 | 0.0001 | - |
|
469 |
+
| 0.4375 | 15300 | 0.0002 | - |
|
470 |
+
| 0.4389 | 15350 | 0.0001 | - |
|
471 |
+
| 0.4403 | 15400 | 0.0002 | - |
|
472 |
+
| 0.4417 | 15450 | 0.0001 | - |
|
473 |
+
| 0.4432 | 15500 | 0.0002 | - |
|
474 |
+
| 0.4446 | 15550 | 0.0002 | - |
|
475 |
+
| 0.4460 | 15600 | 0.0002 | - |
|
476 |
+
| 0.4475 | 15650 | 0.0002 | - |
|
477 |
+
| 0.4489 | 15700 | 0.0003 | - |
|
478 |
+
| 0.4503 | 15750 | 0.0002 | - |
|
479 |
+
| 0.4518 | 15800 | 0.0002 | - |
|
480 |
+
| 0.4532 | 15850 | 0.0003 | - |
|
481 |
+
| 0.4546 | 15900 | 0.0003 | - |
|
482 |
+
| 0.4560 | 15950 | 0.0002 | - |
|
483 |
+
| 0.4575 | 16000 | 0.0002 | - |
|
484 |
+
| 0.4589 | 16050 | 0.0002 | - |
|
485 |
+
| 0.4603 | 16100 | 0.0003 | - |
|
486 |
+
| 0.4618 | 16150 | 0.0002 | - |
|
487 |
+
| 0.4632 | 16200 | 0.0003 | - |
|
488 |
+
| 0.4646 | 16250 | 0.0002 | - |
|
489 |
+
| 0.4660 | 16300 | 0.0002 | - |
|
490 |
+
| 0.4675 | 16350 | 0.0002 | - |
|
491 |
+
| 0.4689 | 16400 | 0.0002 | - |
|
492 |
+
| 0.4703 | 16450 | 0.0002 | - |
|
493 |
+
| 0.4718 | 16500 | 0.0002 | - |
|
494 |
+
| 0.4732 | 16550 | 0.0002 | - |
|
495 |
+
| 0.4746 | 16600 | 0.0003 | - |
|
496 |
+
| 0.4761 | 16650 | 0.0002 | - |
|
497 |
+
| 0.4775 | 16700 | 0.0002 | - |
|
498 |
+
| 0.4789 | 16750 | 0.0002 | - |
|
499 |
+
| 0.4803 | 16800 | 0.0002 | - |
|
500 |
+
| 0.4818 | 16850 | 0.0001 | - |
|
501 |
+
| 0.4832 | 16900 | 0.0003 | - |
|
502 |
+
| 0.4846 | 16950 | 0.0002 | - |
|
503 |
+
| 0.4861 | 17000 | 0.0002 | - |
|
504 |
+
| 0.4875 | 17050 | 0.0002 | - |
|
505 |
+
| 0.4889 | 17100 | 0.0002 | - |
|
506 |
+
| 0.4904 | 17150 | 0.0002 | - |
|
507 |
+
| 0.4918 | 17200 | 0.0002 | - |
|
508 |
+
| 0.4932 | 17250 | 0.0002 | - |
|
509 |
+
| 0.4946 | 17300 | 0.0002 | - |
|
510 |
+
| 0.4961 | 17350 | 0.0002 | - |
|
511 |
+
| 0.4975 | 17400 | 0.0002 | - |
|
512 |
+
| 0.4989 | 17450 | 0.0001 | - |
|
513 |
+
| 0.5004 | 17500 | 0.0001 | - |
|
514 |
+
| 0.5018 | 17550 | 0.0002 | - |
|
515 |
+
| 0.5032 | 17600 | 0.0002 | - |
|
516 |
+
| 0.5046 | 17650 | 0.0002 | - |
|
517 |
+
| 0.5061 | 17700 | 0.0002 | - |
|
518 |
+
| 0.5075 | 17750 | 0.0002 | - |
|
519 |
+
| 0.5089 | 17800 | 0.0002 | - |
|
520 |
+
| 0.5104 | 17850 | 0.0002 | - |
|
521 |
+
| 0.5118 | 17900 | 0.0002 | - |
|
522 |
+
| 0.5132 | 17950 | 0.0003 | - |
|
523 |
+
| 0.5147 | 18000 | 0.0002 | - |
|
524 |
+
| 0.5161 | 18050 | 0.0002 | - |
|
525 |
+
| 0.5175 | 18100 | 0.0002 | - |
|
526 |
+
| 0.5189 | 18150 | 0.0002 | - |
|
527 |
+
| 0.5204 | 18200 | 0.0002 | - |
|
528 |
+
| 0.5218 | 18250 | 0.0002 | - |
|
529 |
+
| 0.5232 | 18300 | 0.0002 | - |
|
530 |
+
| 0.5247 | 18350 | 0.0002 | - |
|
531 |
+
| 0.5261 | 18400 | 0.0002 | - |
|
532 |
+
| 0.5275 | 18450 | 0.0003 | - |
|
533 |
+
| 0.5289 | 18500 | 0.0001 | - |
|
534 |
+
| 0.5304 | 18550 | 0.0002 | - |
|
535 |
+
| 0.5318 | 18600 | 0.0001 | - |
|
536 |
+
| 0.5332 | 18650 | 0.0002 | - |
|
537 |
+
| 0.5347 | 18700 | 0.0002 | - |
|
538 |
+
| 0.5361 | 18750 | 0.0002 | - |
|
539 |
+
| 0.5375 | 18800 | 0.0002 | - |
|
540 |
+
| 0.5390 | 18850 | 0.0001 | - |
|
541 |
+
| 0.5404 | 18900 | 0.0001 | - |
|
542 |
+
| 0.5418 | 18950 | 0.0001 | - |
|
543 |
+
| 0.5432 | 19000 | 0.0002 | - |
|
544 |
+
| 0.5447 | 19050 | 0.0002 | - |
|
545 |
+
| 0.5461 | 19100 | 0.0002 | - |
|
546 |
+
| 0.5475 | 19150 | 0.0002 | - |
|
547 |
+
| 0.5490 | 19200 | 0.0002 | - |
|
548 |
+
| 0.5504 | 19250 | 0.0002 | - |
|
549 |
+
| 0.5518 | 19300 | 0.0001 | - |
|
550 |
+
| 0.5533 | 19350 | 0.0002 | - |
|
551 |
+
| 0.5547 | 19400 | 0.0002 | - |
|
552 |
+
| 0.5561 | 19450 | 0.0004 | - |
|
553 |
+
| 0.5575 | 19500 | 0.0002 | - |
|
554 |
+
| 0.5590 | 19550 | 0.0002 | - |
|
555 |
+
| 0.5604 | 19600 | 0.0003 | - |
|
556 |
+
| 0.5618 | 19650 | 0.0003 | - |
|
557 |
+
| 0.5633 | 19700 | 0.0002 | - |
|
558 |
+
| 0.5647 | 19750 | 0.0002 | - |
|
559 |
+
| 0.5661 | 19800 | 0.0001 | - |
|
560 |
+
| 0.5675 | 19850 | 0.0003 | - |
|
561 |
+
| 0.5690 | 19900 | 0.0002 | - |
|
562 |
+
| 0.5704 | 19950 | 0.0002 | - |
|
563 |
+
| 0.5718 | 20000 | 0.0001 | - |
|
564 |
+
| 0.5733 | 20050 | 0.0003 | - |
|
565 |
+
| 0.5747 | 20100 | 0.0001 | - |
|
566 |
+
| 0.5761 | 20150 | 0.0002 | - |
|
567 |
+
| 0.5776 | 20200 | 0.0003 | - |
|
568 |
+
| 0.5790 | 20250 | 0.0003 | - |
|
569 |
+
| 0.5804 | 20300 | 0.0002 | - |
|
570 |
+
| 0.5818 | 20350 | 0.0003 | - |
|
571 |
+
| 0.5833 | 20400 | 0.0002 | - |
|
572 |
+
| 0.5847 | 20450 | 0.0002 | - |
|
573 |
+
| 0.5861 | 20500 | 0.0002 | - |
|
574 |
+
| 0.5876 | 20550 | 0.0001 | - |
|
575 |
+
| 0.5890 | 20600 | 0.0002 | - |
|
576 |
+
| 0.5904 | 20650 | 0.0002 | - |
|
577 |
+
| 0.5919 | 20700 | 0.0002 | - |
|
578 |
+
| 0.5933 | 20750 | 0.0002 | - |
|
579 |
+
| 0.5947 | 20800 | 0.0001 | - |
|
580 |
+
| 0.5961 | 20850 | 0.0001 | - |
|
581 |
+
| 0.5976 | 20900 | 0.0001 | - |
|
582 |
+
| 0.5990 | 20950 | 0.0001 | - |
|
583 |
+
| 0.6004 | 21000 | 0.0002 | - |
|
584 |
+
| 0.6019 | 21050 | 0.0001 | - |
|
585 |
+
| 0.6033 | 21100 | 0.0002 | - |
|
586 |
+
| 0.6047 | 21150 | 0.0001 | - |
|
587 |
+
| 0.6061 | 21200 | 0.0002 | - |
|
588 |
+
| 0.6076 | 21250 | 0.0002 | - |
|
589 |
+
| 0.6090 | 21300 | 0.0001 | - |
|
590 |
+
| 0.6104 | 21350 | 0.0002 | - |
|
591 |
+
| 0.6119 | 21400 | 0.0001 | - |
|
592 |
+
| 0.6133 | 21450 | 0.0002 | - |
|
593 |
+
| 0.6147 | 21500 | 0.0001 | - |
|
594 |
+
| 0.6162 | 21550 | 0.0002 | - |
|
595 |
+
| 0.6176 | 21600 | 0.0001 | - |
|
596 |
+
| 0.6190 | 21650 | 0.0001 | - |
|
597 |
+
| 0.6204 | 21700 | 0.0001 | - |
|
598 |
+
| 0.6219 | 21750 | 0.0002 | - |
|
599 |
+
| 0.6233 | 21800 | 0.0001 | - |
|
600 |
+
| 0.6247 | 21850 | 0.0001 | - |
|
601 |
+
| 0.6262 | 21900 | 0.0001 | - |
|
602 |
+
| 0.6276 | 21950 | 0.0002 | - |
|
603 |
+
| 0.6290 | 22000 | 0.0002 | - |
|
604 |
+
| 0.6305 | 22050 | 0.0001 | - |
|
605 |
+
| 0.6319 | 22100 | 0.0002 | - |
|
606 |
+
| 0.6333 | 22150 | 0.0001 | - |
|
607 |
+
| 0.6347 | 22200 | 0.0001 | - |
|
608 |
+
| 0.6362 | 22250 | 0.0001 | - |
|
609 |
+
| 0.6376 | 22300 | 0.0002 | - |
|
610 |
+
| 0.6390 | 22350 | 0.0001 | - |
|
611 |
+
| 0.6405 | 22400 | 0.0003 | - |
|
612 |
+
| 0.6419 | 22450 | 0.0002 | - |
|
613 |
+
| 0.6433 | 22500 | 0.0002 | - |
|
614 |
+
| 0.6447 | 22550 | 0.0001 | - |
|
615 |
+
| 0.6462 | 22600 | 0.0002 | - |
|
616 |
+
| 0.6476 | 22650 | 0.0002 | - |
|
617 |
+
| 0.6490 | 22700 | 0.0002 | - |
|
618 |
+
| 0.6505 | 22750 | 0.0002 | - |
|
619 |
+
| 0.6519 | 22800 | 0.0001 | - |
|
620 |
+
| 0.6533 | 22850 | 0.0002 | - |
|
621 |
+
| 0.6548 | 22900 | 0.0002 | - |
|
622 |
+
| 0.6562 | 22950 | 0.0002 | - |
|
623 |
+
| 0.6576 | 23000 | 0.0002 | - |
|
624 |
+
| 0.6590 | 23050 | 0.0002 | - |
|
625 |
+
| 0.6605 | 23100 | 0.0002 | - |
|
626 |
+
| 0.6619 | 23150 | 0.0002 | - |
|
627 |
+
| 0.6633 | 23200 | 0.0002 | - |
|
628 |
+
| 0.6648 | 23250 | 0.0002 | - |
|
629 |
+
| 0.6662 | 23300 | 0.0002 | - |
|
630 |
+
| 0.6676 | 23350 | 0.0001 | - |
|
631 |
+
| 0.6690 | 23400 | 0.0002 | - |
|
632 |
+
| 0.6705 | 23450 | 0.0002 | - |
|
633 |
+
| 0.6719 | 23500 | 0.0001 | - |
|
634 |
+
| 0.6733 | 23550 | 0.0002 | - |
|
635 |
+
| 0.6748 | 23600 | 0.0001 | - |
|
636 |
+
| 0.6762 | 23650 | 0.0002 | - |
|
637 |
+
| 0.6776 | 23700 | 0.0002 | - |
|
638 |
+
| 0.6791 | 23750 | 0.0002 | - |
|
639 |
+
| 0.6805 | 23800 | 0.0001 | - |
|
640 |
+
| 0.6819 | 23850 | 0.0002 | - |
|
641 |
+
| 0.6833 | 23900 | 0.0003 | - |
|
642 |
+
| 0.6848 | 23950 | 0.0002 | - |
|
643 |
+
| 0.6862 | 24000 | 0.0002 | - |
|
644 |
+
| 0.6876 | 24050 | 0.0001 | - |
|
645 |
+
| 0.6891 | 24100 | 0.0002 | - |
|
646 |
+
| 0.6905 | 24150 | 0.0001 | - |
|
647 |
+
| 0.6919 | 24200 | 0.0003 | - |
|
648 |
+
| 0.6934 | 24250 | 0.0002 | - |
|
649 |
+
| 0.6948 | 24300 | 0.0001 | - |
|
650 |
+
| 0.6962 | 24350 | 0.0001 | - |
|
651 |
+
| 0.6976 | 24400 | 0.0001 | - |
|
652 |
+
| 0.6991 | 24450 | 0.0001 | - |
|
653 |
+
| 0.7005 | 24500 | 0.0001 | - |
|
654 |
+
| 0.7019 | 24550 | 0.0002 | - |
|
655 |
+
| 0.7034 | 24600 | 0.0001 | - |
|
656 |
+
| 0.7048 | 24650 | 0.0002 | - |
|
657 |
+
| 0.7062 | 24700 | 0.0001 | - |
|
658 |
+
| 0.7076 | 24750 | 0.0002 | - |
|
659 |
+
| 0.7091 | 24800 | 0.0002 | - |
|
660 |
+
| 0.7105 | 24850 | 0.0002 | - |
|
661 |
+
| 0.7119 | 24900 | 0.0002 | - |
|
662 |
+
| 0.7134 | 24950 | 0.0001 | - |
|
663 |
+
| 0.7148 | 25000 | 0.0002 | - |
|
664 |
+
| 0.7162 | 25050 | 0.0001 | - |
|
665 |
+
| 0.7177 | 25100 | 0.0002 | - |
|
666 |
+
| 0.7191 | 25150 | 0.0001 | - |
|
667 |
+
| 0.7205 | 25200 | 0.0001 | - |
|
668 |
+
| 0.7219 | 25250 | 0.0002 | - |
|
669 |
+
| 0.7234 | 25300 | 0.0002 | - |
|
670 |
+
| 0.7248 | 25350 | 0.0002 | - |
|
671 |
+
| 0.7262 | 25400 | 0.0001 | - |
|
672 |
+
| 0.7277 | 25450 | 0.0002 | - |
|
673 |
+
| 0.7291 | 25500 | 0.0002 | - |
|
674 |
+
| 0.7305 | 25550 | 0.0002 | - |
|
675 |
+
| 0.7320 | 25600 | 0.0001 | - |
|
676 |
+
| 0.7334 | 25650 | 0.0002 | - |
|
677 |
+
| 0.7348 | 25700 | 0.0002 | - |
|
678 |
+
| 0.7362 | 25750 | 0.0002 | - |
|
679 |
+
| 0.7377 | 25800 | 0.0002 | - |
|
680 |
+
| 0.7391 | 25850 | 0.0001 | - |
|
681 |
+
| 0.7405 | 25900 | 0.0002 | - |
|
682 |
+
| 0.7420 | 25950 | 0.0002 | - |
|
683 |
+
| 0.7434 | 26000 | 0.0001 | - |
|
684 |
+
| 0.7448 | 26050 | 0.0001 | - |
|
685 |
+
| 0.7462 | 26100 | 0.0001 | - |
|
686 |
+
| 0.7477 | 26150 | 0.0001 | - |
|
687 |
+
| 0.7491 | 26200 | 0.0001 | - |
|
688 |
+
| 0.7505 | 26250 | 0.0002 | - |
|
689 |
+
| 0.7520 | 26300 | 0.0001 | - |
|
690 |
+
| 0.7534 | 26350 | 0.0001 | - |
|
691 |
+
| 0.7548 | 26400 | 0.0001 | - |
|
692 |
+
| 0.7563 | 26450 | 0.0002 | - |
|
693 |
+
| 0.7577 | 26500 | 0.0001 | - |
|
694 |
+
| 0.7591 | 26550 | 0.0002 | - |
|
695 |
+
| 0.7605 | 26600 | 0.0003 | - |
|
696 |
+
| 0.7620 | 26650 | 0.0002 | - |
|
697 |
+
| 0.7634 | 26700 | 0.0002 | - |
|
698 |
+
| 0.7648 | 26750 | 0.0001 | - |
|
699 |
+
| 0.7663 | 26800 | 0.0001 | - |
|
700 |
+
| 0.7677 | 26850 | 0.0002 | - |
|
701 |
+
| 0.7691 | 26900 | 0.0002 | - |
|
702 |
+
| 0.7706 | 26950 | 0.0001 | - |
|
703 |
+
| 0.7720 | 27000 | 0.0001 | - |
|
704 |
+
| 0.7734 | 27050 | 0.0001 | - |
|
705 |
+
| 0.7748 | 27100 | 0.0001 | - |
|
706 |
+
| 0.7763 | 27150 | 0.0001 | - |
|
707 |
+
| 0.7777 | 27200 | 0.0002 | - |
|
708 |
+
| 0.7791 | 27250 | 0.0001 | - |
|
709 |
+
| 0.7806 | 27300 | 0.0001 | - |
|
710 |
+
| 0.7820 | 27350 | 0.0001 | - |
|
711 |
+
| 0.7834 | 27400 | 0.0002 | - |
|
712 |
+
| 0.7848 | 27450 | 0.0001 | - |
|
713 |
+
| 0.7863 | 27500 | 0.0001 | - |
|
714 |
+
| 0.7877 | 27550 | 0.0001 | - |
|
715 |
+
| 0.7891 | 27600 | 0.0001 | - |
|
716 |
+
| 0.7906 | 27650 | 0.0001 | - |
|
717 |
+
| 0.7920 | 27700 | 0.0001 | - |
|
718 |
+
| 0.7934 | 27750 | 0.0001 | - |
|
719 |
+
| 0.7949 | 27800 | 0.0001 | - |
|
720 |
+
| 0.7963 | 27850 | 0.0001 | - |
|
721 |
+
| 0.7977 | 27900 | 0.0001 | - |
|
722 |
+
| 0.7991 | 27950 | 0.0003 | - |
|
723 |
+
| 0.8006 | 28000 | 0.0001 | - |
|
724 |
+
| 0.8020 | 28050 | 0.0002 | - |
|
725 |
+
| 0.8034 | 28100 | 0.0001 | - |
|
726 |
+
| 0.8049 | 28150 | 0.0002 | - |
|
727 |
+
| 0.8063 | 28200 | 0.0 | - |
|
728 |
+
| 0.8077 | 28250 | 0.0001 | - |
|
729 |
+
| 0.8091 | 28300 | 0.0001 | - |
|
730 |
+
| 0.8106 | 28350 | 0.0001 | - |
|
731 |
+
| 0.8120 | 28400 | 0.0001 | - |
|
732 |
+
| 0.8134 | 28450 | 0.0002 | - |
|
733 |
+
| 0.8149 | 28500 | 0.0001 | - |
|
734 |
+
| 0.8163 | 28550 | 0.0001 | - |
|
735 |
+
| 0.8177 | 28600 | 0.0001 | - |
|
736 |
+
| 0.8192 | 28650 | 0.0001 | - |
|
737 |
+
| 0.8206 | 28700 | 0.0001 | - |
|
738 |
+
| 0.8220 | 28750 | 0.0002 | - |
|
739 |
+
| 0.8234 | 28800 | 0.0002 | - |
|
740 |
+
| 0.8249 | 28850 | 0.0002 | - |
|
741 |
+
| 0.8263 | 28900 | 0.0001 | - |
|
742 |
+
| 0.8277 | 28950 | 0.0002 | - |
|
743 |
+
| 0.8292 | 29000 | 0.0001 | - |
|
744 |
+
| 0.8306 | 29050 | 0.0002 | - |
|
745 |
+
| 0.8320 | 29100 | 0.0001 | - |
|
746 |
+
| 0.8335 | 29150 | 0.0001 | - |
|
747 |
+
| 0.8349 | 29200 | 0.0001 | - |
|
748 |
+
| 0.8363 | 29250 | 0.0001 | - |
|
749 |
+
| 0.8377 | 29300 | 0.0001 | - |
|
750 |
+
| 0.8392 | 29350 | 0.0001 | - |
|
751 |
+
| 0.8406 | 29400 | 0.0001 | - |
|
752 |
+
| 0.8420 | 29450 | 0.0002 | - |
|
753 |
+
| 0.8435 | 29500 | 0.0001 | - |
|
754 |
+
| 0.8449 | 29550 | 0.0001 | - |
|
755 |
+
| 0.8463 | 29600 | 0.0001 | - |
|
756 |
+
| 0.8477 | 29650 | 0.0001 | - |
|
757 |
+
| 0.8492 | 29700 | 0.0001 | - |
|
758 |
+
| 0.8506 | 29750 | 0.0002 | - |
|
759 |
+
| 0.8520 | 29800 | 0.0002 | - |
|
760 |
+
| 0.8535 | 29850 | 0.0001 | - |
|
761 |
+
| 0.8549 | 29900 | 0.0002 | - |
|
762 |
+
| 0.8563 | 29950 | 0.0002 | - |
|
763 |
+
| 0.8578 | 30000 | 0.0002 | - |
|
764 |
+
| 0.8592 | 30050 | 0.0001 | - |
|
765 |
+
| 0.8606 | 30100 | 0.0002 | - |
|
766 |
+
| 0.8620 | 30150 | 0.0002 | - |
|
767 |
+
| 0.8635 | 30200 | 0.0003 | - |
|
768 |
+
| 0.8649 | 30250 | 0.0001 | - |
|
769 |
+
| 0.8663 | 30300 | 0.0001 | - |
|
770 |
+
| 0.8678 | 30350 | 0.0001 | - |
|
771 |
+
| 0.8692 | 30400 | 0.0001 | - |
|
772 |
+
| 0.8706 | 30450 | 0.0002 | - |
|
773 |
+
| 0.8721 | 30500 | 0.0001 | - |
|
774 |
+
| 0.8735 | 30550 | 0.0001 | - |
|
775 |
+
| 0.8749 | 30600 | 0.0001 | - |
|
776 |
+
| 0.8763 | 30650 | 0.0002 | - |
|
777 |
+
| 0.8778 | 30700 | 0.0002 | - |
|
778 |
+
| 0.8792 | 30750 | 0.0001 | - |
|
779 |
+
| 0.8806 | 30800 | 0.0002 | - |
|
780 |
+
| 0.8821 | 30850 | 0.0002 | - |
|
781 |
+
| 0.8835 | 30900 | 0.0001 | - |
|
782 |
+
| 0.8849 | 30950 | 0.0002 | - |
|
783 |
+
| 0.8863 | 31000 | 0.0002 | - |
|
784 |
+
| 0.8878 | 31050 | 0.0002 | - |
|
785 |
+
| 0.8892 | 31100 | 0.0001 | - |
|
786 |
+
| 0.8906 | 31150 | 0.0001 | - |
|
787 |
+
| 0.8921 | 31200 | 0.0001 | - |
|
788 |
+
| 0.8935 | 31250 | 0.0001 | - |
|
789 |
+
| 0.8949 | 31300 | 0.0002 | - |
|
790 |
+
| 0.8964 | 31350 | 0.0002 | - |
|
791 |
+
| 0.8978 | 31400 | 0.0001 | - |
|
792 |
+
| 0.8992 | 31450 | 0.0001 | - |
|
793 |
+
| 0.9006 | 31500 | 0.0002 | - |
|
794 |
+
| 0.9021 | 31550 | 0.0002 | - |
|
795 |
+
| 0.9035 | 31600 | 0.0001 | - |
|
796 |
+
| 0.9049 | 31650 | 0.0002 | - |
|
797 |
+
| 0.9064 | 31700 | 0.0001 | - |
|
798 |
+
| 0.9078 | 31750 | 0.0001 | - |
|
799 |
+
| 0.9092 | 31800 | 0.0001 | - |
|
800 |
+
| 0.9107 | 31850 | 0.0002 | - |
|
801 |
+
| 0.9121 | 31900 | 0.0002 | - |
|
802 |
+
| 0.9135 | 31950 | 0.0001 | - |
|
803 |
+
| 0.9149 | 32000 | 0.0001 | - |
|
804 |
+
| 0.9164 | 32050 | 0.0001 | - |
|
805 |
+
| 0.9178 | 32100 | 0.0001 | - |
|
806 |
+
| 0.9192 | 32150 | 0.0001 | - |
|
807 |
+
| 0.9207 | 32200 | 0.0001 | - |
|
808 |
+
| 0.9221 | 32250 | 0.0001 | - |
|
809 |
+
| 0.9235 | 32300 | 0.0002 | - |
|
810 |
+
| 0.9249 | 32350 | 0.0001 | - |
|
811 |
+
| 0.9264 | 32400 | 0.0001 | - |
|
812 |
+
| 0.9278 | 32450 | 0.0002 | - |
|
813 |
+
| 0.9292 | 32500 | 0.0001 | - |
|
814 |
+
| 0.9307 | 32550 | 0.0001 | - |
|
815 |
+
| 0.9321 | 32600 | 0.0002 | - |
|
816 |
+
| 0.9335 | 32650 | 0.0001 | - |
|
817 |
+
| 0.9350 | 32700 | 0.0001 | - |
|
818 |
+
| 0.9364 | 32750 | 0.0001 | - |
|
819 |
+
| 0.9378 | 32800 | 0.0001 | - |
|
820 |
+
| 0.9392 | 32850 | 0.0001 | - |
|
821 |
+
| 0.9407 | 32900 | 0.0002 | - |
|
822 |
+
| 0.9421 | 32950 | 0.0002 | - |
|
823 |
+
| 0.9435 | 33000 | 0.0 | - |
|
824 |
+
| 0.9450 | 33050 | 0.0001 | - |
|
825 |
+
| 0.9464 | 33100 | 0.0001 | - |
|
826 |
+
| 0.9478 | 33150 | 0.0001 | - |
|
827 |
+
| 0.9492 | 33200 | 0.0001 | - |
|
828 |
+
| 0.9507 | 33250 | 0.0001 | - |
|
829 |
+
| 0.9521 | 33300 | 0.0001 | - |
|
830 |
+
| 0.9535 | 33350 | 0.0002 | - |
|
831 |
+
| 0.9550 | 33400 | 0.0001 | - |
|
832 |
+
| 0.9564 | 33450 | 0.0001 | - |
|
833 |
+
| 0.9578 | 33500 | 0.0002 | - |
|
834 |
+
| 0.9593 | 33550 | 0.0001 | - |
|
835 |
+
| 0.9607 | 33600 | 0.0001 | - |
|
836 |
+
| 0.9621 | 33650 | 0.0002 | - |
|
837 |
+
| 0.9635 | 33700 | 0.0002 | - |
|
838 |
+
| 0.9650 | 33750 | 0.0001 | - |
|
839 |
+
| 0.9664 | 33800 | 0.0001 | - |
|
840 |
+
| 0.9678 | 33850 | 0.0001 | - |
|
841 |
+
| 0.9693 | 33900 | 0.0001 | - |
|
842 |
+
| 0.9707 | 33950 | 0.0 | - |
|
843 |
+
| 0.9721 | 34000 | 0.0002 | - |
|
844 |
+
| 0.9736 | 34050 | 0.0001 | - |
|
845 |
+
| 0.9750 | 34100 | 0.0001 | - |
|
846 |
+
| 0.9764 | 34150 | 0.0001 | - |
|
847 |
+
| 0.9778 | 34200 | 0.0001 | - |
|
848 |
+
| 0.9793 | 34250 | 0.0002 | - |
|
849 |
+
| 0.9807 | 34300 | 0.0002 | - |
|
850 |
+
| 0.9821 | 34350 | 0.0001 | - |
|
851 |
+
| 0.9836 | 34400 | 0.0001 | - |
|
852 |
+
| 0.9850 | 34450 | 0.0001 | - |
|
853 |
+
| 0.9864 | 34500 | 0.0001 | - |
|
854 |
+
| 0.9878 | 34550 | 0.0001 | - |
|
855 |
+
| 0.9893 | 34600 | 0.0001 | - |
|
856 |
+
| 0.9907 | 34650 | 0.0001 | - |
|
857 |
+
| 0.9921 | 34700 | 0.0001 | - |
|
858 |
+
| 0.9936 | 34750 | 0.0001 | - |
|
859 |
+
| 0.9950 | 34800 | 0.0001 | - |
|
860 |
+
| 0.9964 | 34850 | 0.0001 | - |
|
861 |
+
| 0.9979 | 34900 | 0.0002 | - |
|
862 |
+
| 0.9993 | 34950 | 0.0002 | - |
|
863 |
+
| **1.0** | **34975** | **-** | **0.0221** |
|
864 |
+
|
865 |
+
* The bold row denotes the saved checkpoint.
|
866 |
+
### Framework Versions
|
867 |
+
- Python: 3.11.9
|
868 |
+
- SetFit: 1.0.3
|
869 |
+
- Sentence Transformers: 2.7.0
|
870 |
+
- Transformers: 4.42.4
|
871 |
+
- PyTorch: 2.4.0+cu121
|
872 |
+
- Datasets: 2.21.0
|
873 |
+
- Tokenizers: 0.19.1
|
874 |
+
|
875 |
+
## Citation
|
876 |
+
|
877 |
+
### BibTeX
|
878 |
+
```bibtex
|
879 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
880 |
+
doi = {10.48550/ARXIV.2209.11055},
|
881 |
+
url = {https://arxiv.org/abs/2209.11055},
|
882 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
883 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
884 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
885 |
+
publisher = {arXiv},
|
886 |
+
year = {2022},
|
887 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
888 |
+
}
|
889 |
+
```
|
890 |
+
|
891 |
+
<!--
|
892 |
+
## Glossary
|
893 |
+
|
894 |
+
*Clearly define terms in order to be accessible across audiences.*
|
895 |
+
-->
|
896 |
+
|
897 |
+
<!--
|
898 |
+
## Model Card Authors
|
899 |
+
|
900 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
901 |
+
-->
|
902 |
+
|
903 |
+
<!--
|
904 |
+
## Model Card Contact
|
905 |
+
|
906 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
907 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_34975",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.42.4",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"Tablejoin",
|
4 |
+
"Rejection",
|
5 |
+
"Aggregation",
|
6 |
+
"Lookup",
|
7 |
+
"Generalreply",
|
8 |
+
"Viewtables",
|
9 |
+
"Lookup_1"
|
10 |
+
],
|
11 |
+
"normalize_embeddings": false
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d96f6cc7d96dfb32efeaaec6304fbc51dc5e79c00c8f589aa159886b97ad6ac
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89d34b19e91e0d7cb8fe6cc0a40a0449f52546baef62f4bc6c0ed53dba58721d
|
3 |
+
size 22735
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|