---
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: What tables are included in the starhub_data_asset database that relate to
customer complaints?
- text: What are the tables that I can access in the starhub_data_asset database?
- text: Can I have avg Cost_Efficiency
- text: Analyze product category revenue impact.
- text: Retrieve data_asset_kpi_ma_product details.
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9914529914529915
name: Accuracy
---
# SetFit with BAAI/bge-small-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generalreply |
- 'Can you recommend a good movie to watch?'
- "Oh, that's a tough one! There are so many good memories to choose from. But if I had to pick just one, I think it would be spending summers at my grandparent's house. We would play board games, make homemade ice cream, and have big family dinners. It was always so much fun!"
- 'Oh, I love reading books! My favorite genre is definitely fantasy. How about you? What kind of books do you like to read?'
|
| Lookup_1 | - 'Get me data_asset_kpi_cf cash flow.'
- 'Display data_asset_001_pcc for electronics category.'
- 'Calculate Gross Profit Margin Trends.'
|
| Lookup | - "What are the products in the 'Clothing' category?"
- "Get me the phone numbers of customers with the last name 'Johnson'."
- "Can you filter by employees who have the last name 'Brown'?"
|
| Aggregation | - 'Get me max Accumulated Amortisation and Impairment.'
- 'Can I have mode of Revenue'
- 'Show me count company_name'
|
| Tablejoin | - 'Could you merge the Orders and Employees tables to identify which employees have processed high-value orders?'
- 'Could you connect the Products and Orders tables to analyze sales data by product category?'
- 'How can I connect the Customers and Orders tables to find customers who made purchases during a specific promotion?'
|
| Viewtables | - 'What are the tables in the starhub_data_asset database that a user can join to perform a sales analysis?'
- 'What tables can be found in the asset-tracking section of the starhub_data_asset database?'
- 'What tables exist in the starhub_data_asset database?'
|
| Rejection | - "Let's avoid creating any new data sets."
- "I'd prefer to avoid generating data fields."
- "I'm not interested in filtering this collection."
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9915 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-small-en-v1.5-brahmaputra-iter-10")
# Run inference
preds = model("Can I have avg Cost_Efficiency")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 8.6563 | 62 |
| Label | Training Sample Count |
|:-------------|:----------------------|
| Tablejoin | 129 |
| Rejection | 77 |
| Aggregation | 282 |
| Lookup | 60 |
| Generalreply | 63 |
| Viewtables | 74 |
| Lookup_1 | 150 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:---------:|:-------------:|:---------------:|
| 0.0000 | 1 | 0.2038 | - |
| 0.0014 | 50 | 0.2019 | - |
| 0.0029 | 100 | 0.1983 | - |
| 0.0043 | 150 | 0.206 | - |
| 0.0057 | 200 | 0.2268 | - |
| 0.0071 | 250 | 0.2025 | - |
| 0.0086 | 300 | 0.2041 | - |
| 0.0100 | 350 | 0.1426 | - |
| 0.0114 | 400 | 0.1513 | - |
| 0.0129 | 450 | 0.1215 | - |
| 0.0143 | 500 | 0.1426 | - |
| 0.0157 | 550 | 0.0859 | - |
| 0.0172 | 600 | 0.0486 | - |
| 0.0186 | 650 | 0.0378 | - |
| 0.0200 | 700 | 0.0519 | - |
| 0.0214 | 750 | 0.0717 | - |
| 0.0229 | 800 | 0.1161 | - |
| 0.0243 | 850 | 0.0771 | - |
| 0.0257 | 900 | 0.074 | - |
| 0.0272 | 950 | 0.0567 | - |
| 0.0286 | 1000 | 0.0223 | - |
| 0.0300 | 1050 | 0.0266 | - |
| 0.0315 | 1100 | 0.0261 | - |
| 0.0329 | 1150 | 0.0333 | - |
| 0.0343 | 1200 | 0.0107 | - |
| 0.0357 | 1250 | 0.0123 | - |
| 0.0372 | 1300 | 0.0193 | - |
| 0.0386 | 1350 | 0.0039 | - |
| 0.0400 | 1400 | 0.0079 | - |
| 0.0415 | 1450 | 0.0035 | - |
| 0.0429 | 1500 | 0.003 | - |
| 0.0443 | 1550 | 0.0041 | - |
| 0.0457 | 1600 | 0.0038 | - |
| 0.0472 | 1650 | 0.002 | - |
| 0.0486 | 1700 | 0.0028 | - |
| 0.0500 | 1750 | 0.0056 | - |
| 0.0515 | 1800 | 0.0035 | - |
| 0.0529 | 1850 | 0.0027 | - |
| 0.0543 | 1900 | 0.0028 | - |
| 0.0558 | 1950 | 0.0028 | - |
| 0.0572 | 2000 | 0.0019 | - |
| 0.0586 | 2050 | 0.0046 | - |
| 0.0600 | 2100 | 0.0017 | - |
| 0.0615 | 2150 | 0.0016 | - |
| 0.0629 | 2200 | 0.0022 | - |
| 0.0643 | 2250 | 0.002 | - |
| 0.0658 | 2300 | 0.0029 | - |
| 0.0672 | 2350 | 0.0032 | - |
| 0.0686 | 2400 | 0.0018 | - |
| 0.0701 | 2450 | 0.0015 | - |
| 0.0715 | 2500 | 0.0015 | - |
| 0.0729 | 2550 | 0.0016 | - |
| 0.0743 | 2600 | 0.0012 | - |
| 0.0758 | 2650 | 0.0014 | - |
| 0.0772 | 2700 | 0.0015 | - |
| 0.0786 | 2750 | 0.0018 | - |
| 0.0801 | 2800 | 0.0012 | - |
| 0.0815 | 2850 | 0.0009 | - |
| 0.0829 | 2900 | 0.001 | - |
| 0.0843 | 2950 | 0.0011 | - |
| 0.0858 | 3000 | 0.0011 | - |
| 0.0872 | 3050 | 0.001 | - |
| 0.0886 | 3100 | 0.0012 | - |
| 0.0901 | 3150 | 0.0006 | - |
| 0.0915 | 3200 | 0.0013 | - |
| 0.0929 | 3250 | 0.0007 | - |
| 0.0944 | 3300 | 0.0007 | - |
| 0.0958 | 3350 | 0.0009 | - |
| 0.0972 | 3400 | 0.0008 | - |
| 0.0986 | 3450 | 0.0005 | - |
| 0.1001 | 3500 | 0.001 | - |
| 0.1015 | 3550 | 0.001 | - |
| 0.1029 | 3600 | 0.0008 | - |
| 0.1044 | 3650 | 0.0007 | - |
| 0.1058 | 3700 | 0.0006 | - |
| 0.1072 | 3750 | 0.0009 | - |
| 0.1086 | 3800 | 0.0012 | - |
| 0.1101 | 3850 | 0.0007 | - |
| 0.1115 | 3900 | 0.0008 | - |
| 0.1129 | 3950 | 0.0009 | - |
| 0.1144 | 4000 | 0.0007 | - |
| 0.1158 | 4050 | 0.0007 | - |
| 0.1172 | 4100 | 0.0007 | - |
| 0.1187 | 4150 | 0.0006 | - |
| 0.1201 | 4200 | 0.0006 | - |
| 0.1215 | 4250 | 0.0011 | - |
| 0.1229 | 4300 | 0.0012 | - |
| 0.1244 | 4350 | 0.0007 | - |
| 0.1258 | 4400 | 0.0007 | - |
| 0.1272 | 4450 | 0.0006 | - |
| 0.1287 | 4500 | 0.0005 | - |
| 0.1301 | 4550 | 0.0008 | - |
| 0.1315 | 4600 | 0.0006 | - |
| 0.1330 | 4650 | 0.0007 | - |
| 0.1344 | 4700 | 0.0006 | - |
| 0.1358 | 4750 | 0.0005 | - |
| 0.1372 | 4800 | 0.0006 | - |
| 0.1387 | 4850 | 0.0008 | - |
| 0.1401 | 4900 | 0.0008 | - |
| 0.1415 | 4950 | 0.0004 | - |
| 0.1430 | 5000 | 0.0005 | - |
| 0.1444 | 5050 | 0.0005 | - |
| 0.1458 | 5100 | 0.0007 | - |
| 0.1472 | 5150 | 0.0006 | - |
| 0.1487 | 5200 | 0.0006 | - |
| 0.1501 | 5250 | 0.0004 | - |
| 0.1515 | 5300 | 0.0005 | - |
| 0.1530 | 5350 | 0.0007 | - |
| 0.1544 | 5400 | 0.0007 | - |
| 0.1558 | 5450 | 0.0005 | - |
| 0.1573 | 5500 | 0.0007 | - |
| 0.1587 | 5550 | 0.0004 | - |
| 0.1601 | 5600 | 0.0004 | - |
| 0.1615 | 5650 | 0.0006 | - |
| 0.1630 | 5700 | 0.0005 | - |
| 0.1644 | 5750 | 0.0006 | - |
| 0.1658 | 5800 | 0.0004 | - |
| 0.1673 | 5850 | 0.0005 | - |
| 0.1687 | 5900 | 0.0007 | - |
| 0.1701 | 5950 | 0.0005 | - |
| 0.1716 | 6000 | 0.0005 | - |
| 0.1730 | 6050 | 0.0003 | - |
| 0.1744 | 6100 | 0.0003 | - |
| 0.1758 | 6150 | 0.0005 | - |
| 0.1773 | 6200 | 0.0007 | - |
| 0.1787 | 6250 | 0.0004 | - |
| 0.1801 | 6300 | 0.0006 | - |
| 0.1816 | 6350 | 0.0004 | - |
| 0.1830 | 6400 | 0.0003 | - |
| 0.1844 | 6450 | 0.0005 | - |
| 0.1858 | 6500 | 0.0004 | - |
| 0.1873 | 6550 | 0.0006 | - |
| 0.1887 | 6600 | 0.0005 | - |
| 0.1901 | 6650 | 0.0005 | - |
| 0.1916 | 6700 | 0.0003 | - |
| 0.1930 | 6750 | 0.0004 | - |
| 0.1944 | 6800 | 0.0004 | - |
| 0.1959 | 6850 | 0.0004 | - |
| 0.1973 | 6900 | 0.0003 | - |
| 0.1987 | 6950 | 0.0004 | - |
| 0.2001 | 7000 | 0.0004 | - |
| 0.2016 | 7050 | 0.0003 | - |
| 0.2030 | 7100 | 0.0003 | - |
| 0.2044 | 7150 | 0.0005 | - |
| 0.2059 | 7200 | 0.0004 | - |
| 0.2073 | 7250 | 0.0003 | - |
| 0.2087 | 7300 | 0.0002 | - |
| 0.2102 | 7350 | 0.0003 | - |
| 0.2116 | 7400 | 0.0004 | - |
| 0.2130 | 7450 | 0.0006 | - |
| 0.2144 | 7500 | 0.0003 | - |
| 0.2159 | 7550 | 0.0002 | - |
| 0.2173 | 7600 | 0.0004 | - |
| 0.2187 | 7650 | 0.0003 | - |
| 0.2202 | 7700 | 0.0005 | - |
| 0.2216 | 7750 | 0.0004 | - |
| 0.2230 | 7800 | 0.0004 | - |
| 0.2244 | 7850 | 0.0004 | - |
| 0.2259 | 7900 | 0.0003 | - |
| 0.2273 | 7950 | 0.0005 | - |
| 0.2287 | 8000 | 0.0003 | - |
| 0.2302 | 8050 | 0.0003 | - |
| 0.2316 | 8100 | 0.0003 | - |
| 0.2330 | 8150 | 0.0002 | - |
| 0.2345 | 8200 | 0.0002 | - |
| 0.2359 | 8250 | 0.0004 | - |
| 0.2373 | 8300 | 0.0004 | - |
| 0.2387 | 8350 | 0.0004 | - |
| 0.2402 | 8400 | 0.0003 | - |
| 0.2416 | 8450 | 0.0002 | - |
| 0.2430 | 8500 | 0.0002 | - |
| 0.2445 | 8550 | 0.0003 | - |
| 0.2459 | 8600 | 0.0004 | - |
| 0.2473 | 8650 | 0.0004 | - |
| 0.2487 | 8700 | 0.0003 | - |
| 0.2502 | 8750 | 0.0002 | - |
| 0.2516 | 8800 | 0.0003 | - |
| 0.2530 | 8850 | 0.0003 | - |
| 0.2545 | 8900 | 0.0004 | - |
| 0.2559 | 8950 | 0.0003 | - |
| 0.2573 | 9000 | 0.0002 | - |
| 0.2588 | 9050 | 0.0003 | - |
| 0.2602 | 9100 | 0.0003 | - |
| 0.2616 | 9150 | 0.0003 | - |
| 0.2630 | 9200 | 0.0003 | - |
| 0.2645 | 9250 | 0.0002 | - |
| 0.2659 | 9300 | 0.0002 | - |
| 0.2673 | 9350 | 0.0003 | - |
| 0.2688 | 9400 | 0.0552 | - |
| 0.2702 | 9450 | 0.0003 | - |
| 0.2716 | 9500 | 0.0003 | - |
| 0.2731 | 9550 | 0.0004 | - |
| 0.2745 | 9600 | 0.0004 | - |
| 0.2759 | 9650 | 0.0005 | - |
| 0.2773 | 9700 | 0.0003 | - |
| 0.2788 | 9750 | 0.0003 | - |
| 0.2802 | 9800 | 0.0003 | - |
| 0.2816 | 9850 | 0.0003 | - |
| 0.2831 | 9900 | 0.0004 | - |
| 0.2845 | 9950 | 0.0003 | - |
| 0.2859 | 10000 | 0.0003 | - |
| 0.2873 | 10050 | 0.0004 | - |
| 0.2888 | 10100 | 0.0005 | - |
| 0.2902 | 10150 | 0.0003 | - |
| 0.2916 | 10200 | 0.0004 | - |
| 0.2931 | 10250 | 0.0002 | - |
| 0.2945 | 10300 | 0.0005 | - |
| 0.2959 | 10350 | 0.0003 | - |
| 0.2974 | 10400 | 0.0003 | - |
| 0.2988 | 10450 | 0.0002 | - |
| 0.3002 | 10500 | 0.0003 | - |
| 0.3016 | 10550 | 0.0004 | - |
| 0.3031 | 10600 | 0.0003 | - |
| 0.3045 | 10650 | 0.0003 | - |
| 0.3059 | 10700 | 0.0004 | - |
| 0.3074 | 10750 | 0.0003 | - |
| 0.3088 | 10800 | 0.0003 | - |
| 0.3102 | 10850 | 0.0003 | - |
| 0.3117 | 10900 | 0.0002 | - |
| 0.3131 | 10950 | 0.0005 | - |
| 0.3145 | 11000 | 0.0003 | - |
| 0.3159 | 11050 | 0.0002 | - |
| 0.3174 | 11100 | 0.0003 | - |
| 0.3188 | 11150 | 0.0004 | - |
| 0.3202 | 11200 | 0.0004 | - |
| 0.3217 | 11250 | 0.0002 | - |
| 0.3231 | 11300 | 0.0003 | - |
| 0.3245 | 11350 | 0.0003 | - |
| 0.3259 | 11400 | 0.0003 | - |
| 0.3274 | 11450 | 0.0004 | - |
| 0.3288 | 11500 | 0.0004 | - |
| 0.3302 | 11550 | 0.0003 | - |
| 0.3317 | 11600 | 0.0003 | - |
| 0.3331 | 11650 | 0.0002 | - |
| 0.3345 | 11700 | 0.0004 | - |
| 0.3360 | 11750 | 0.0002 | - |
| 0.3374 | 11800 | 0.0003 | - |
| 0.3388 | 11850 | 0.0002 | - |
| 0.3402 | 11900 | 0.0003 | - |
| 0.3417 | 11950 | 0.0002 | - |
| 0.3431 | 12000 | 0.0004 | - |
| 0.3445 | 12050 | 0.0003 | - |
| 0.3460 | 12100 | 0.0004 | - |
| 0.3474 | 12150 | 0.0005 | - |
| 0.3488 | 12200 | 0.0004 | - |
| 0.3503 | 12250 | 0.0004 | - |
| 0.3517 | 12300 | 0.0002 | - |
| 0.3531 | 12350 | 0.0002 | - |
| 0.3545 | 12400 | 0.0004 | - |
| 0.3560 | 12450 | 0.0002 | - |
| 0.3574 | 12500 | 0.0002 | - |
| 0.3588 | 12550 | 0.0003 | - |
| 0.3603 | 12600 | 0.0005 | - |
| 0.3617 | 12650 | 0.0003 | - |
| 0.3631 | 12700 | 0.0003 | - |
| 0.3645 | 12750 | 0.0002 | - |
| 0.3660 | 12800 | 0.0003 | - |
| 0.3674 | 12850 | 0.0002 | - |
| 0.3688 | 12900 | 0.0002 | - |
| 0.3703 | 12950 | 0.0001 | - |
| 0.3717 | 13000 | 0.0002 | - |
| 0.3731 | 13050 | 0.0003 | - |
| 0.3746 | 13100 | 0.0003 | - |
| 0.3760 | 13150 | 0.0002 | - |
| 0.3774 | 13200 | 0.0004 | - |
| 0.3788 | 13250 | 0.0003 | - |
| 0.3803 | 13300 | 0.0002 | - |
| 0.3817 | 13350 | 0.0003 | - |
| 0.3831 | 13400 | 0.0003 | - |
| 0.3846 | 13450 | 0.0003 | - |
| 0.3860 | 13500 | 0.0002 | - |
| 0.3874 | 13550 | 0.0002 | - |
| 0.3888 | 13600 | 0.0003 | - |
| 0.3903 | 13650 | 0.0003 | - |
| 0.3917 | 13700 | 0.0002 | - |
| 0.3931 | 13750 | 0.0002 | - |
| 0.3946 | 13800 | 0.0002 | - |
| 0.3960 | 13850 | 0.0004 | - |
| 0.3974 | 13900 | 0.0003 | - |
| 0.3989 | 13950 | 0.0002 | - |
| 0.4003 | 14000 | 0.0003 | - |
| 0.4017 | 14050 | 0.0001 | - |
| 0.4031 | 14100 | 0.0002 | - |
| 0.4046 | 14150 | 0.0001 | - |
| 0.4060 | 14200 | 0.0002 | - |
| 0.4074 | 14250 | 0.0002 | - |
| 0.4089 | 14300 | 0.0002 | - |
| 0.4103 | 14350 | 0.0003 | - |
| 0.4117 | 14400 | 0.0003 | - |
| 0.4132 | 14450 | 0.0002 | - |
| 0.4146 | 14500 | 0.0003 | - |
| 0.4160 | 14550 | 0.0003 | - |
| 0.4174 | 14600 | 0.0002 | - |
| 0.4189 | 14650 | 0.0002 | - |
| 0.4203 | 14700 | 0.0003 | - |
| 0.4217 | 14750 | 0.0003 | - |
| 0.4232 | 14800 | 0.0002 | - |
| 0.4246 | 14850 | 0.0003 | - |
| 0.4260 | 14900 | 0.0003 | - |
| 0.4274 | 14950 | 0.0003 | - |
| 0.4289 | 15000 | 0.0002 | - |
| 0.4303 | 15050 | 0.0002 | - |
| 0.4317 | 15100 | 0.0002 | - |
| 0.4332 | 15150 | 0.0004 | - |
| 0.4346 | 15200 | 0.0003 | - |
| 0.4360 | 15250 | 0.0001 | - |
| 0.4375 | 15300 | 0.0002 | - |
| 0.4389 | 15350 | 0.0001 | - |
| 0.4403 | 15400 | 0.0002 | - |
| 0.4417 | 15450 | 0.0001 | - |
| 0.4432 | 15500 | 0.0002 | - |
| 0.4446 | 15550 | 0.0002 | - |
| 0.4460 | 15600 | 0.0002 | - |
| 0.4475 | 15650 | 0.0002 | - |
| 0.4489 | 15700 | 0.0003 | - |
| 0.4503 | 15750 | 0.0002 | - |
| 0.4518 | 15800 | 0.0002 | - |
| 0.4532 | 15850 | 0.0003 | - |
| 0.4546 | 15900 | 0.0003 | - |
| 0.4560 | 15950 | 0.0002 | - |
| 0.4575 | 16000 | 0.0002 | - |
| 0.4589 | 16050 | 0.0002 | - |
| 0.4603 | 16100 | 0.0003 | - |
| 0.4618 | 16150 | 0.0002 | - |
| 0.4632 | 16200 | 0.0003 | - |
| 0.4646 | 16250 | 0.0002 | - |
| 0.4660 | 16300 | 0.0002 | - |
| 0.4675 | 16350 | 0.0002 | - |
| 0.4689 | 16400 | 0.0002 | - |
| 0.4703 | 16450 | 0.0002 | - |
| 0.4718 | 16500 | 0.0002 | - |
| 0.4732 | 16550 | 0.0002 | - |
| 0.4746 | 16600 | 0.0003 | - |
| 0.4761 | 16650 | 0.0002 | - |
| 0.4775 | 16700 | 0.0002 | - |
| 0.4789 | 16750 | 0.0002 | - |
| 0.4803 | 16800 | 0.0002 | - |
| 0.4818 | 16850 | 0.0001 | - |
| 0.4832 | 16900 | 0.0003 | - |
| 0.4846 | 16950 | 0.0002 | - |
| 0.4861 | 17000 | 0.0002 | - |
| 0.4875 | 17050 | 0.0002 | - |
| 0.4889 | 17100 | 0.0002 | - |
| 0.4904 | 17150 | 0.0002 | - |
| 0.4918 | 17200 | 0.0002 | - |
| 0.4932 | 17250 | 0.0002 | - |
| 0.4946 | 17300 | 0.0002 | - |
| 0.4961 | 17350 | 0.0002 | - |
| 0.4975 | 17400 | 0.0002 | - |
| 0.4989 | 17450 | 0.0001 | - |
| 0.5004 | 17500 | 0.0001 | - |
| 0.5018 | 17550 | 0.0002 | - |
| 0.5032 | 17600 | 0.0002 | - |
| 0.5046 | 17650 | 0.0002 | - |
| 0.5061 | 17700 | 0.0002 | - |
| 0.5075 | 17750 | 0.0002 | - |
| 0.5089 | 17800 | 0.0002 | - |
| 0.5104 | 17850 | 0.0002 | - |
| 0.5118 | 17900 | 0.0002 | - |
| 0.5132 | 17950 | 0.0003 | - |
| 0.5147 | 18000 | 0.0002 | - |
| 0.5161 | 18050 | 0.0002 | - |
| 0.5175 | 18100 | 0.0002 | - |
| 0.5189 | 18150 | 0.0002 | - |
| 0.5204 | 18200 | 0.0002 | - |
| 0.5218 | 18250 | 0.0002 | - |
| 0.5232 | 18300 | 0.0002 | - |
| 0.5247 | 18350 | 0.0002 | - |
| 0.5261 | 18400 | 0.0002 | - |
| 0.5275 | 18450 | 0.0003 | - |
| 0.5289 | 18500 | 0.0001 | - |
| 0.5304 | 18550 | 0.0002 | - |
| 0.5318 | 18600 | 0.0001 | - |
| 0.5332 | 18650 | 0.0002 | - |
| 0.5347 | 18700 | 0.0002 | - |
| 0.5361 | 18750 | 0.0002 | - |
| 0.5375 | 18800 | 0.0002 | - |
| 0.5390 | 18850 | 0.0001 | - |
| 0.5404 | 18900 | 0.0001 | - |
| 0.5418 | 18950 | 0.0001 | - |
| 0.5432 | 19000 | 0.0002 | - |
| 0.5447 | 19050 | 0.0002 | - |
| 0.5461 | 19100 | 0.0002 | - |
| 0.5475 | 19150 | 0.0002 | - |
| 0.5490 | 19200 | 0.0002 | - |
| 0.5504 | 19250 | 0.0002 | - |
| 0.5518 | 19300 | 0.0001 | - |
| 0.5533 | 19350 | 0.0002 | - |
| 0.5547 | 19400 | 0.0002 | - |
| 0.5561 | 19450 | 0.0004 | - |
| 0.5575 | 19500 | 0.0002 | - |
| 0.5590 | 19550 | 0.0002 | - |
| 0.5604 | 19600 | 0.0003 | - |
| 0.5618 | 19650 | 0.0003 | - |
| 0.5633 | 19700 | 0.0002 | - |
| 0.5647 | 19750 | 0.0002 | - |
| 0.5661 | 19800 | 0.0001 | - |
| 0.5675 | 19850 | 0.0003 | - |
| 0.5690 | 19900 | 0.0002 | - |
| 0.5704 | 19950 | 0.0002 | - |
| 0.5718 | 20000 | 0.0001 | - |
| 0.5733 | 20050 | 0.0003 | - |
| 0.5747 | 20100 | 0.0001 | - |
| 0.5761 | 20150 | 0.0002 | - |
| 0.5776 | 20200 | 0.0003 | - |
| 0.5790 | 20250 | 0.0003 | - |
| 0.5804 | 20300 | 0.0002 | - |
| 0.5818 | 20350 | 0.0003 | - |
| 0.5833 | 20400 | 0.0002 | - |
| 0.5847 | 20450 | 0.0002 | - |
| 0.5861 | 20500 | 0.0002 | - |
| 0.5876 | 20550 | 0.0001 | - |
| 0.5890 | 20600 | 0.0002 | - |
| 0.5904 | 20650 | 0.0002 | - |
| 0.5919 | 20700 | 0.0002 | - |
| 0.5933 | 20750 | 0.0002 | - |
| 0.5947 | 20800 | 0.0001 | - |
| 0.5961 | 20850 | 0.0001 | - |
| 0.5976 | 20900 | 0.0001 | - |
| 0.5990 | 20950 | 0.0001 | - |
| 0.6004 | 21000 | 0.0002 | - |
| 0.6019 | 21050 | 0.0001 | - |
| 0.6033 | 21100 | 0.0002 | - |
| 0.6047 | 21150 | 0.0001 | - |
| 0.6061 | 21200 | 0.0002 | - |
| 0.6076 | 21250 | 0.0002 | - |
| 0.6090 | 21300 | 0.0001 | - |
| 0.6104 | 21350 | 0.0002 | - |
| 0.6119 | 21400 | 0.0001 | - |
| 0.6133 | 21450 | 0.0002 | - |
| 0.6147 | 21500 | 0.0001 | - |
| 0.6162 | 21550 | 0.0002 | - |
| 0.6176 | 21600 | 0.0001 | - |
| 0.6190 | 21650 | 0.0001 | - |
| 0.6204 | 21700 | 0.0001 | - |
| 0.6219 | 21750 | 0.0002 | - |
| 0.6233 | 21800 | 0.0001 | - |
| 0.6247 | 21850 | 0.0001 | - |
| 0.6262 | 21900 | 0.0001 | - |
| 0.6276 | 21950 | 0.0002 | - |
| 0.6290 | 22000 | 0.0002 | - |
| 0.6305 | 22050 | 0.0001 | - |
| 0.6319 | 22100 | 0.0002 | - |
| 0.6333 | 22150 | 0.0001 | - |
| 0.6347 | 22200 | 0.0001 | - |
| 0.6362 | 22250 | 0.0001 | - |
| 0.6376 | 22300 | 0.0002 | - |
| 0.6390 | 22350 | 0.0001 | - |
| 0.6405 | 22400 | 0.0003 | - |
| 0.6419 | 22450 | 0.0002 | - |
| 0.6433 | 22500 | 0.0002 | - |
| 0.6447 | 22550 | 0.0001 | - |
| 0.6462 | 22600 | 0.0002 | - |
| 0.6476 | 22650 | 0.0002 | - |
| 0.6490 | 22700 | 0.0002 | - |
| 0.6505 | 22750 | 0.0002 | - |
| 0.6519 | 22800 | 0.0001 | - |
| 0.6533 | 22850 | 0.0002 | - |
| 0.6548 | 22900 | 0.0002 | - |
| 0.6562 | 22950 | 0.0002 | - |
| 0.6576 | 23000 | 0.0002 | - |
| 0.6590 | 23050 | 0.0002 | - |
| 0.6605 | 23100 | 0.0002 | - |
| 0.6619 | 23150 | 0.0002 | - |
| 0.6633 | 23200 | 0.0002 | - |
| 0.6648 | 23250 | 0.0002 | - |
| 0.6662 | 23300 | 0.0002 | - |
| 0.6676 | 23350 | 0.0001 | - |
| 0.6690 | 23400 | 0.0002 | - |
| 0.6705 | 23450 | 0.0002 | - |
| 0.6719 | 23500 | 0.0001 | - |
| 0.6733 | 23550 | 0.0002 | - |
| 0.6748 | 23600 | 0.0001 | - |
| 0.6762 | 23650 | 0.0002 | - |
| 0.6776 | 23700 | 0.0002 | - |
| 0.6791 | 23750 | 0.0002 | - |
| 0.6805 | 23800 | 0.0001 | - |
| 0.6819 | 23850 | 0.0002 | - |
| 0.6833 | 23900 | 0.0003 | - |
| 0.6848 | 23950 | 0.0002 | - |
| 0.6862 | 24000 | 0.0002 | - |
| 0.6876 | 24050 | 0.0001 | - |
| 0.6891 | 24100 | 0.0002 | - |
| 0.6905 | 24150 | 0.0001 | - |
| 0.6919 | 24200 | 0.0003 | - |
| 0.6934 | 24250 | 0.0002 | - |
| 0.6948 | 24300 | 0.0001 | - |
| 0.6962 | 24350 | 0.0001 | - |
| 0.6976 | 24400 | 0.0001 | - |
| 0.6991 | 24450 | 0.0001 | - |
| 0.7005 | 24500 | 0.0001 | - |
| 0.7019 | 24550 | 0.0002 | - |
| 0.7034 | 24600 | 0.0001 | - |
| 0.7048 | 24650 | 0.0002 | - |
| 0.7062 | 24700 | 0.0001 | - |
| 0.7076 | 24750 | 0.0002 | - |
| 0.7091 | 24800 | 0.0002 | - |
| 0.7105 | 24850 | 0.0002 | - |
| 0.7119 | 24900 | 0.0002 | - |
| 0.7134 | 24950 | 0.0001 | - |
| 0.7148 | 25000 | 0.0002 | - |
| 0.7162 | 25050 | 0.0001 | - |
| 0.7177 | 25100 | 0.0002 | - |
| 0.7191 | 25150 | 0.0001 | - |
| 0.7205 | 25200 | 0.0001 | - |
| 0.7219 | 25250 | 0.0002 | - |
| 0.7234 | 25300 | 0.0002 | - |
| 0.7248 | 25350 | 0.0002 | - |
| 0.7262 | 25400 | 0.0001 | - |
| 0.7277 | 25450 | 0.0002 | - |
| 0.7291 | 25500 | 0.0002 | - |
| 0.7305 | 25550 | 0.0002 | - |
| 0.7320 | 25600 | 0.0001 | - |
| 0.7334 | 25650 | 0.0002 | - |
| 0.7348 | 25700 | 0.0002 | - |
| 0.7362 | 25750 | 0.0002 | - |
| 0.7377 | 25800 | 0.0002 | - |
| 0.7391 | 25850 | 0.0001 | - |
| 0.7405 | 25900 | 0.0002 | - |
| 0.7420 | 25950 | 0.0002 | - |
| 0.7434 | 26000 | 0.0001 | - |
| 0.7448 | 26050 | 0.0001 | - |
| 0.7462 | 26100 | 0.0001 | - |
| 0.7477 | 26150 | 0.0001 | - |
| 0.7491 | 26200 | 0.0001 | - |
| 0.7505 | 26250 | 0.0002 | - |
| 0.7520 | 26300 | 0.0001 | - |
| 0.7534 | 26350 | 0.0001 | - |
| 0.7548 | 26400 | 0.0001 | - |
| 0.7563 | 26450 | 0.0002 | - |
| 0.7577 | 26500 | 0.0001 | - |
| 0.7591 | 26550 | 0.0002 | - |
| 0.7605 | 26600 | 0.0003 | - |
| 0.7620 | 26650 | 0.0002 | - |
| 0.7634 | 26700 | 0.0002 | - |
| 0.7648 | 26750 | 0.0001 | - |
| 0.7663 | 26800 | 0.0001 | - |
| 0.7677 | 26850 | 0.0002 | - |
| 0.7691 | 26900 | 0.0002 | - |
| 0.7706 | 26950 | 0.0001 | - |
| 0.7720 | 27000 | 0.0001 | - |
| 0.7734 | 27050 | 0.0001 | - |
| 0.7748 | 27100 | 0.0001 | - |
| 0.7763 | 27150 | 0.0001 | - |
| 0.7777 | 27200 | 0.0002 | - |
| 0.7791 | 27250 | 0.0001 | - |
| 0.7806 | 27300 | 0.0001 | - |
| 0.7820 | 27350 | 0.0001 | - |
| 0.7834 | 27400 | 0.0002 | - |
| 0.7848 | 27450 | 0.0001 | - |
| 0.7863 | 27500 | 0.0001 | - |
| 0.7877 | 27550 | 0.0001 | - |
| 0.7891 | 27600 | 0.0001 | - |
| 0.7906 | 27650 | 0.0001 | - |
| 0.7920 | 27700 | 0.0001 | - |
| 0.7934 | 27750 | 0.0001 | - |
| 0.7949 | 27800 | 0.0001 | - |
| 0.7963 | 27850 | 0.0001 | - |
| 0.7977 | 27900 | 0.0001 | - |
| 0.7991 | 27950 | 0.0003 | - |
| 0.8006 | 28000 | 0.0001 | - |
| 0.8020 | 28050 | 0.0002 | - |
| 0.8034 | 28100 | 0.0001 | - |
| 0.8049 | 28150 | 0.0002 | - |
| 0.8063 | 28200 | 0.0 | - |
| 0.8077 | 28250 | 0.0001 | - |
| 0.8091 | 28300 | 0.0001 | - |
| 0.8106 | 28350 | 0.0001 | - |
| 0.8120 | 28400 | 0.0001 | - |
| 0.8134 | 28450 | 0.0002 | - |
| 0.8149 | 28500 | 0.0001 | - |
| 0.8163 | 28550 | 0.0001 | - |
| 0.8177 | 28600 | 0.0001 | - |
| 0.8192 | 28650 | 0.0001 | - |
| 0.8206 | 28700 | 0.0001 | - |
| 0.8220 | 28750 | 0.0002 | - |
| 0.8234 | 28800 | 0.0002 | - |
| 0.8249 | 28850 | 0.0002 | - |
| 0.8263 | 28900 | 0.0001 | - |
| 0.8277 | 28950 | 0.0002 | - |
| 0.8292 | 29000 | 0.0001 | - |
| 0.8306 | 29050 | 0.0002 | - |
| 0.8320 | 29100 | 0.0001 | - |
| 0.8335 | 29150 | 0.0001 | - |
| 0.8349 | 29200 | 0.0001 | - |
| 0.8363 | 29250 | 0.0001 | - |
| 0.8377 | 29300 | 0.0001 | - |
| 0.8392 | 29350 | 0.0001 | - |
| 0.8406 | 29400 | 0.0001 | - |
| 0.8420 | 29450 | 0.0002 | - |
| 0.8435 | 29500 | 0.0001 | - |
| 0.8449 | 29550 | 0.0001 | - |
| 0.8463 | 29600 | 0.0001 | - |
| 0.8477 | 29650 | 0.0001 | - |
| 0.8492 | 29700 | 0.0001 | - |
| 0.8506 | 29750 | 0.0002 | - |
| 0.8520 | 29800 | 0.0002 | - |
| 0.8535 | 29850 | 0.0001 | - |
| 0.8549 | 29900 | 0.0002 | - |
| 0.8563 | 29950 | 0.0002 | - |
| 0.8578 | 30000 | 0.0002 | - |
| 0.8592 | 30050 | 0.0001 | - |
| 0.8606 | 30100 | 0.0002 | - |
| 0.8620 | 30150 | 0.0002 | - |
| 0.8635 | 30200 | 0.0003 | - |
| 0.8649 | 30250 | 0.0001 | - |
| 0.8663 | 30300 | 0.0001 | - |
| 0.8678 | 30350 | 0.0001 | - |
| 0.8692 | 30400 | 0.0001 | - |
| 0.8706 | 30450 | 0.0002 | - |
| 0.8721 | 30500 | 0.0001 | - |
| 0.8735 | 30550 | 0.0001 | - |
| 0.8749 | 30600 | 0.0001 | - |
| 0.8763 | 30650 | 0.0002 | - |
| 0.8778 | 30700 | 0.0002 | - |
| 0.8792 | 30750 | 0.0001 | - |
| 0.8806 | 30800 | 0.0002 | - |
| 0.8821 | 30850 | 0.0002 | - |
| 0.8835 | 30900 | 0.0001 | - |
| 0.8849 | 30950 | 0.0002 | - |
| 0.8863 | 31000 | 0.0002 | - |
| 0.8878 | 31050 | 0.0002 | - |
| 0.8892 | 31100 | 0.0001 | - |
| 0.8906 | 31150 | 0.0001 | - |
| 0.8921 | 31200 | 0.0001 | - |
| 0.8935 | 31250 | 0.0001 | - |
| 0.8949 | 31300 | 0.0002 | - |
| 0.8964 | 31350 | 0.0002 | - |
| 0.8978 | 31400 | 0.0001 | - |
| 0.8992 | 31450 | 0.0001 | - |
| 0.9006 | 31500 | 0.0002 | - |
| 0.9021 | 31550 | 0.0002 | - |
| 0.9035 | 31600 | 0.0001 | - |
| 0.9049 | 31650 | 0.0002 | - |
| 0.9064 | 31700 | 0.0001 | - |
| 0.9078 | 31750 | 0.0001 | - |
| 0.9092 | 31800 | 0.0001 | - |
| 0.9107 | 31850 | 0.0002 | - |
| 0.9121 | 31900 | 0.0002 | - |
| 0.9135 | 31950 | 0.0001 | - |
| 0.9149 | 32000 | 0.0001 | - |
| 0.9164 | 32050 | 0.0001 | - |
| 0.9178 | 32100 | 0.0001 | - |
| 0.9192 | 32150 | 0.0001 | - |
| 0.9207 | 32200 | 0.0001 | - |
| 0.9221 | 32250 | 0.0001 | - |
| 0.9235 | 32300 | 0.0002 | - |
| 0.9249 | 32350 | 0.0001 | - |
| 0.9264 | 32400 | 0.0001 | - |
| 0.9278 | 32450 | 0.0002 | - |
| 0.9292 | 32500 | 0.0001 | - |
| 0.9307 | 32550 | 0.0001 | - |
| 0.9321 | 32600 | 0.0002 | - |
| 0.9335 | 32650 | 0.0001 | - |
| 0.9350 | 32700 | 0.0001 | - |
| 0.9364 | 32750 | 0.0001 | - |
| 0.9378 | 32800 | 0.0001 | - |
| 0.9392 | 32850 | 0.0001 | - |
| 0.9407 | 32900 | 0.0002 | - |
| 0.9421 | 32950 | 0.0002 | - |
| 0.9435 | 33000 | 0.0 | - |
| 0.9450 | 33050 | 0.0001 | - |
| 0.9464 | 33100 | 0.0001 | - |
| 0.9478 | 33150 | 0.0001 | - |
| 0.9492 | 33200 | 0.0001 | - |
| 0.9507 | 33250 | 0.0001 | - |
| 0.9521 | 33300 | 0.0001 | - |
| 0.9535 | 33350 | 0.0002 | - |
| 0.9550 | 33400 | 0.0001 | - |
| 0.9564 | 33450 | 0.0001 | - |
| 0.9578 | 33500 | 0.0002 | - |
| 0.9593 | 33550 | 0.0001 | - |
| 0.9607 | 33600 | 0.0001 | - |
| 0.9621 | 33650 | 0.0002 | - |
| 0.9635 | 33700 | 0.0002 | - |
| 0.9650 | 33750 | 0.0001 | - |
| 0.9664 | 33800 | 0.0001 | - |
| 0.9678 | 33850 | 0.0001 | - |
| 0.9693 | 33900 | 0.0001 | - |
| 0.9707 | 33950 | 0.0 | - |
| 0.9721 | 34000 | 0.0002 | - |
| 0.9736 | 34050 | 0.0001 | - |
| 0.9750 | 34100 | 0.0001 | - |
| 0.9764 | 34150 | 0.0001 | - |
| 0.9778 | 34200 | 0.0001 | - |
| 0.9793 | 34250 | 0.0002 | - |
| 0.9807 | 34300 | 0.0002 | - |
| 0.9821 | 34350 | 0.0001 | - |
| 0.9836 | 34400 | 0.0001 | - |
| 0.9850 | 34450 | 0.0001 | - |
| 0.9864 | 34500 | 0.0001 | - |
| 0.9878 | 34550 | 0.0001 | - |
| 0.9893 | 34600 | 0.0001 | - |
| 0.9907 | 34650 | 0.0001 | - |
| 0.9921 | 34700 | 0.0001 | - |
| 0.9936 | 34750 | 0.0001 | - |
| 0.9950 | 34800 | 0.0001 | - |
| 0.9964 | 34850 | 0.0001 | - |
| 0.9979 | 34900 | 0.0002 | - |
| 0.9993 | 34950 | 0.0002 | - |
| **1.0** | **34975** | **-** | **0.0221** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.9
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```