File size: 2,326 Bytes
22b1ca3 d999adc 22b1ca3 d999adc 22b1ca3 d999adc 22b1ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: microsoft/xtremedistil-l6-h256-uncased
tags:
- generated_from_trainer
datasets:
- nbroad/company_names
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xtremedistil-l6-h256-company-names
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nbroad/company_names
type: nbroad/company_names
metrics:
- name: Precision
type: precision
value: 0.6998602375960866
- name: Recall
type: recall
value: 0.7154210197339048
- name: F1
type: f1
value: 0.7075550845586612
- name: Accuracy
type: accuracy
value: 0.9702296390871982
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xtremedistil-l6-h256-company-names
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the nbroad/company_names dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0789
- Precision: 0.6999
- Recall: 0.7154
- F1: 0.7076
- Accuracy: 0.9702
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 48
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1052 | 1.0 | 2126 | 0.0854 | 0.6824 | 0.6605 | 0.6713 | 0.9678 |
| 0.0724 | 2.0 | 4252 | 0.0814 | 0.6925 | 0.7042 | 0.6983 | 0.9696 |
| 0.0778 | 3.0 | 6378 | 0.0789 | 0.6999 | 0.7154 | 0.7076 | 0.9702 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.14.1
|