ncduy commited on
Commit
365b205
1 Parent(s): eba7959

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - emotion
7
+ metrics:
8
+ - f1
9
+ model-index:
10
+ - name: bert-base-cased-finetuned-emotion
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: emotion
17
+ type: emotion
18
+ args: default
19
+ metrics:
20
+ - name: F1
21
+ type: f1
22
+ value: 0.9365323747830425
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # bert-base-cased-finetuned-emotion
29
+
30
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.1342
33
+ - F1: 0.9365
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 2e-05
53
+ - train_batch_size: 64
54
+ - eval_batch_size: 64
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 5
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
64
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
65
+ | 0.7357 | 1.0 | 250 | 0.2318 | 0.9224 |
66
+ | 0.1758 | 2.0 | 500 | 0.1679 | 0.9349 |
67
+ | 0.1228 | 3.0 | 750 | 0.1385 | 0.9382 |
68
+ | 0.0961 | 4.0 | 1000 | 0.1452 | 0.9340 |
69
+ | 0.0805 | 5.0 | 1250 | 0.1342 | 0.9365 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.12.5
75
+ - Pytorch 1.10.0+cu111
76
+ - Datasets 1.16.1
77
+ - Tokenizers 0.10.3