File size: 2,418 Bytes
dd4085a
0df5897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd4085a
 
0df5897
 
dd4085a
0df5897
dd4085a
0df5897
 
 
 
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
dd4085a
0df5897
 
 
 
 
 
 
 
 
 
 
 
dd4085a
0df5897
dd4085a
0df5897
 
 
 
 
 
 
 
 
 
 
 
dd4085a
 
0df5897
dd4085a
0df5897
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-yoruba-colab-CV17.0-v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: yo
      split: test
      args: yo
    metrics:
    - name: Wer
      type: wer
      value: 0.5771575538197752
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-yoruba-colab-CV17.0-v2

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8450
- Wer: 0.5772

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 2.7641        | 3.0769  | 200  | 1.0220          | 0.7877 |
| 0.6684        | 6.1538  | 400  | 0.9003          | 0.6490 |
| 0.4959        | 9.2308  | 600  | 0.9080          | 0.7072 |
| 0.359         | 12.3077 | 800  | 0.9788          | 0.6147 |
| 0.2047        | 15.3846 | 1000 | 1.0914          | 0.6017 |
| 0.0858        | 18.4615 | 1200 | 1.4604          | 0.5973 |
| 0.0426        | 21.5385 | 1400 | 1.5740          | 0.5988 |
| 0.0088        | 24.6154 | 1600 | 1.7418          | 0.5753 |
| 0.0017        | 27.6923 | 1800 | 1.8206          | 0.5779 |
| 0.001         | 30.7692 | 2000 | 1.8450          | 0.5772 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1