--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-2.0-yoruba-colab-CV17.0-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: yo split: test args: yo metrics: - name: Wer type: wer value: 0.5771575538197752 --- # w2v-bert-2.0-yoruba-colab-CV17.0-v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.8450 - Wer: 0.5772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 2.7641 | 3.0769 | 200 | 1.0220 | 0.7877 | | 0.6684 | 6.1538 | 400 | 0.9003 | 0.6490 | | 0.4959 | 9.2308 | 600 | 0.9080 | 0.7072 | | 0.359 | 12.3077 | 800 | 0.9788 | 0.6147 | | 0.2047 | 15.3846 | 1000 | 1.0914 | 0.6017 | | 0.0858 | 18.4615 | 1200 | 1.4604 | 0.5973 | | 0.0426 | 21.5385 | 1400 | 1.5740 | 0.5988 | | 0.0088 | 24.6154 | 1600 | 1.7418 | 0.5753 | | 0.0017 | 27.6923 | 1800 | 1.8206 | 0.5779 | | 0.001 | 30.7692 | 2000 | 1.8450 | 0.5772 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1