--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer - bleu model-index: - name: wav2vec2-mms-1b-CV17.0-training_set_variations results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ta split: validation args: ta metrics: - name: Wer type: wer value: 0.35028609973948643 - name: Bleu type: bleu value: 0.4335646189418293 --- # wav2vec2-mms-1b-CV17.0-training_set_variations This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1970 - Wer: 0.3503 - Cer: 0.0557 - Bleu: 0.4336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | 7.329 | 0.0977 | 100 | 0.3217 | 0.4338 | 0.0716 | 0.3272 | | 0.2154 | 0.1953 | 200 | 0.2314 | 0.3794 | 0.0634 | 0.3999 | | 0.189 | 0.2930 | 300 | 0.2188 | 0.3656 | 0.0592 | 0.4166 | | 0.1975 | 0.3906 | 400 | 0.2212 | 0.3763 | 0.0608 | 0.4032 | | 0.1813 | 0.4883 | 500 | 0.2117 | 0.3634 | 0.0585 | 0.4171 | | 0.1791 | 0.5859 | 600 | 0.2074 | 0.3590 | 0.0578 | 0.4220 | | 0.187 | 0.6836 | 700 | 0.2087 | 0.3607 | 0.0582 | 0.4188 | | 0.1789 | 0.7812 | 800 | 0.2064 | 0.3542 | 0.0568 | 0.4327 | | 0.1704 | 0.8789 | 900 | 0.2076 | 0.3661 | 0.0587 | 0.4095 | | 0.1813 | 0.9766 | 1000 | 0.2044 | 0.3589 | 0.0574 | 0.4200 | | 0.1633 | 1.0742 | 1100 | 0.2029 | 0.3582 | 0.0575 | 0.4220 | | 0.1699 | 1.1719 | 1200 | 0.2034 | 0.3537 | 0.0566 | 0.4335 | | 0.1822 | 1.2695 | 1300 | 0.2037 | 0.3589 | 0.0578 | 0.4227 | | 0.1654 | 1.3672 | 1400 | 0.2028 | 0.3549 | 0.0568 | 0.4288 | | 0.1696 | 1.4648 | 1500 | 0.2011 | 0.3579 | 0.0567 | 0.4199 | | 0.1622 | 1.5625 | 1600 | 0.1999 | 0.3568 | 0.0570 | 0.4228 | | 0.1742 | 1.6602 | 1700 | 0.1983 | 0.3490 | 0.0559 | 0.4365 | | 0.1581 | 1.7578 | 1800 | 0.1973 | 0.3511 | 0.0558 | 0.4329 | | 0.1616 | 1.8555 | 1900 | 0.1970 | 0.3482 | 0.0556 | 0.4381 | | 0.1607 | 1.9531 | 2000 | 0.1970 | 0.3503 | 0.0557 | 0.4336 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1