--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-small-malayalam-colab-CV17.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 0.6534493874919407 --- # whisper-small-malayalam-colab-CV17.0 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3197 - Wer: 0.6534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.7367 | 1.5748 | 200 | 0.2861 | 0.8443 | | 0.1405 | 3.1496 | 400 | 0.2516 | 0.7550 | | 0.061 | 4.7244 | 600 | 0.2315 | 0.7121 | | 0.0295 | 6.2992 | 800 | 0.2600 | 0.6995 | | 0.0161 | 7.8740 | 1000 | 0.2731 | 0.6721 | | 0.0073 | 9.4488 | 1200 | 0.2925 | 0.6847 | | 0.0033 | 11.0236 | 1400 | 0.3144 | 0.6692 | | 0.0014 | 12.5984 | 1600 | 0.3111 | 0.6580 | | 0.0002 | 14.1732 | 1800 | 0.3161 | 0.6557 | | 0.0001 | 15.7480 | 2000 | 0.3197 | 0.6534 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1