neelan-elucidate-ai commited on
Commit
c1c760b
1 Parent(s): c05c0d5

Training in progress, step 5

Browse files
.gitattributes CHANGED
File without changes
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 51, "</s>": 52}
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "hf-test/xls-r-dummy",
3
+ "activation_dropout": 0.0,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 256,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": false,
17
+ "conv_dim": [
18
+ 32,
19
+ 32,
20
+ 32
21
+ ],
22
+ "conv_kernel": [
23
+ 8,
24
+ 8,
25
+ 8
26
+ ],
27
+ "conv_stride": [
28
+ 4,
29
+ 4,
30
+ 4
31
+ ],
32
+ "ctc_loss_reduction": "mean",
33
+ "ctc_zero_infinity": false,
34
+ "diversity_loss_weight": 0.1,
35
+ "do_stable_layer_norm": true,
36
+ "eos_token_id": 2,
37
+ "feat_extract_activation": "gelu",
38
+ "feat_extract_dropout": 0.0,
39
+ "feat_extract_norm": "layer",
40
+ "feat_proj_dropout": 0.0,
41
+ "feat_quantizer_dropout": 0.0,
42
+ "final_dropout": 0.0,
43
+ "hidden_act": "gelu",
44
+ "hidden_dropout": 0.0,
45
+ "hidden_dropout_prob": 0.1,
46
+ "hidden_size": 16,
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 20,
49
+ "layer_norm_eps": 1e-05,
50
+ "layerdrop": 0.0,
51
+ "mask_feature_length": 10,
52
+ "mask_feature_min_masks": 0,
53
+ "mask_feature_prob": 0.0,
54
+ "mask_time_length": 10,
55
+ "mask_time_min_masks": 2,
56
+ "mask_time_prob": 0.05,
57
+ "model_type": "wav2vec2",
58
+ "num_adapter_layers": 3,
59
+ "num_attention_heads": 2,
60
+ "num_codevector_groups": 2,
61
+ "num_codevectors_per_group": 320,
62
+ "num_conv_pos_embedding_groups": 2,
63
+ "num_conv_pos_embeddings": 16,
64
+ "num_feat_extract_layers": 3,
65
+ "num_hidden_layers": 4,
66
+ "num_negatives": 10,
67
+ "output_hidden_size": 16,
68
+ "pad_token_id": 50,
69
+ "proj_codevector_dim": 256,
70
+ "tdnn_dilation": [
71
+ 1,
72
+ 2,
73
+ 3,
74
+ 1,
75
+ 1
76
+ ],
77
+ "tdnn_dim": [
78
+ 512,
79
+ 512,
80
+ 512,
81
+ 512,
82
+ 1500
83
+ ],
84
+ "tdnn_kernel": [
85
+ 5,
86
+ 3,
87
+ 3,
88
+ 1,
89
+ 1
90
+ ],
91
+ "torch_dtype": "float32",
92
+ "transformers_version": "4.20.0.dev0",
93
+ "use_weighted_layer_sum": false,
94
+ "vocab_size": 53,
95
+ "xvector_output_dim": 512
96
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": false,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f58a77b7059619b94e6d9289072901ddadd8aa79f8886ab6f588c215f3e1559
3
+ size 138662
run.sh ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="mozilla-foundation/common_voice_7_0" \
3
+ --model_name_or_path="hf-test/xls-r-dummy" \
4
+ --dataset_config_name="ab" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --max_steps="10" \
8
+ --per_device_train_batch_size="2" \
9
+ --learning_rate="3e-4" \
10
+ --save_total_limit="1" \
11
+ --evaluation_strategy="steps" \
12
+ --text_column_name="sentence" \
13
+ --length_column_name="input_length" \
14
+ --save_steps="5" \
15
+ --layerdrop="0.0" \
16
+ --freeze_feature_encoder \
17
+ --gradient_checkpointing \
18
+ --fp16 \
19
+ --group_by_length \
20
+ --push_to_hub \
21
+ --use_auth_token \
22
+ --do_train --do_eval
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,766 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.20.0.dev0")
53
+
54
+ require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": (
105
+ "Probability of each feature vector along the time axis to be chosen as the start of the vector"
106
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
107
+ "vectors will be masked along the time axis."
108
+ )
109
+ },
110
+ )
111
+ mask_time_length: int = field(
112
+ default=10,
113
+ metadata={"help": "Length of vector span to mask along the time axis."},
114
+ )
115
+ mask_feature_prob: float = field(
116
+ default=0.0,
117
+ metadata={
118
+ "help": (
119
+ "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
120
+ " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
121
+ " bins will be masked along the time axis."
122
+ )
123
+ },
124
+ )
125
+ mask_feature_length: int = field(
126
+ default=10,
127
+ metadata={"help": "Length of vector span to mask along the feature axis."},
128
+ )
129
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
130
+ ctc_loss_reduction: Optional[str] = field(
131
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
132
+ )
133
+
134
+
135
+ @dataclass
136
+ class DataTrainingArguments:
137
+ """
138
+ Arguments pertaining to what data we are going to input our model for training and eval.
139
+
140
+ Using `HfArgumentParser` we can turn this class
141
+ into argparse arguments to be able to specify them on
142
+ the command line.
143
+ """
144
+
145
+ dataset_name: str = field(
146
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ dataset_config_name: str = field(
149
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
150
+ )
151
+ train_split_name: str = field(
152
+ default="train+validation",
153
+ metadata={
154
+ "help": (
155
+ "The name of the training data set split to use (via the datasets library). Defaults to "
156
+ "'train+validation'"
157
+ )
158
+ },
159
+ )
160
+ eval_split_name: str = field(
161
+ default="test",
162
+ metadata={
163
+ "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
164
+ },
165
+ )
166
+ audio_column_name: str = field(
167
+ default="audio",
168
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
169
+ )
170
+ text_column_name: str = field(
171
+ default="text",
172
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
173
+ )
174
+ overwrite_cache: bool = field(
175
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
176
+ )
177
+ preprocessing_num_workers: Optional[int] = field(
178
+ default=None,
179
+ metadata={"help": "The number of processes to use for the preprocessing."},
180
+ )
181
+ max_train_samples: Optional[int] = field(
182
+ default=None,
183
+ metadata={
184
+ "help": (
185
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
186
+ "value if set."
187
+ )
188
+ },
189
+ )
190
+ max_eval_samples: Optional[int] = field(
191
+ default=None,
192
+ metadata={
193
+ "help": (
194
+ "For debugging purposes or quicker training, truncate the number of validation examples to this "
195
+ "value if set."
196
+ )
197
+ },
198
+ )
199
+ chars_to_ignore: Optional[List[str]] = list_field(
200
+ default=None,
201
+ metadata={"help": "A list of characters to remove from the transcripts."},
202
+ )
203
+ eval_metrics: List[str] = list_field(
204
+ default=["wer"],
205
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
206
+ )
207
+ max_duration_in_seconds: float = field(
208
+ default=20.0,
209
+ metadata={
210
+ "help": (
211
+ "Filter audio files that are longer than `max_duration_in_seconds` seconds to"
212
+ " 'max_duration_in_seconds`"
213
+ )
214
+ },
215
+ )
216
+ min_duration_in_seconds: float = field(
217
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
218
+ )
219
+ preprocessing_only: bool = field(
220
+ default=False,
221
+ metadata={
222
+ "help": (
223
+ "Whether to only do data preprocessing and skip training. This is especially useful when data"
224
+ " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
225
+ " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
226
+ " can consequently be loaded in distributed training"
227
+ )
228
+ },
229
+ )
230
+ use_auth_token: bool = field(
231
+ default=False,
232
+ metadata={
233
+ "help": (
234
+ "If :obj:`True`, will use the token generated when running"
235
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
236
+ )
237
+ },
238
+ )
239
+ unk_token: str = field(
240
+ default="[UNK]",
241
+ metadata={"help": "The unk token for the tokenizer"},
242
+ )
243
+ pad_token: str = field(
244
+ default="[PAD]",
245
+ metadata={"help": "The padding token for the tokenizer"},
246
+ )
247
+ word_delimiter_token: str = field(
248
+ default="|",
249
+ metadata={"help": "The word delimiter token for the tokenizer"},
250
+ )
251
+ phoneme_language: Optional[str] = field(
252
+ default=None,
253
+ metadata={
254
+ "help": (
255
+ "The target language that should be used be"
256
+ " passed to the tokenizer for tokenization. Note that"
257
+ " this is only relevant if the model classifies the"
258
+ " input audio to a sequence of phoneme sequences."
259
+ )
260
+ },
261
+ )
262
+
263
+
264
+ @dataclass
265
+ class DataCollatorCTCWithPadding:
266
+ """
267
+ Data collator that will dynamically pad the inputs received.
268
+ Args:
269
+ processor (:class:`~transformers.AutoProcessor`)
270
+ The processor used for proccessing the data.
271
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
272
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
273
+ among:
274
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
275
+ sequence if provided).
276
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
277
+ maximum acceptable input length for the model if that argument is not provided.
278
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
279
+ different lengths).
280
+ max_length (:obj:`int`, `optional`):
281
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
282
+ max_length_labels (:obj:`int`, `optional`):
283
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
284
+ pad_to_multiple_of (:obj:`int`, `optional`):
285
+ If set will pad the sequence to a multiple of the provided value.
286
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
287
+ 7.5 (Volta).
288
+ """
289
+
290
+ processor: AutoProcessor
291
+ padding: Union[bool, str] = "longest"
292
+ pad_to_multiple_of: Optional[int] = None
293
+ pad_to_multiple_of_labels: Optional[int] = None
294
+
295
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
296
+ # split inputs and labels since they have to be of different lenghts and need
297
+ # different padding methods
298
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
299
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
300
+
301
+ batch = self.processor.pad(
302
+ input_features,
303
+ padding=self.padding,
304
+ pad_to_multiple_of=self.pad_to_multiple_of,
305
+ return_tensors="pt",
306
+ )
307
+
308
+ with self.processor.as_target_processor():
309
+ labels_batch = self.processor.pad(
310
+ label_features,
311
+ padding=self.padding,
312
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
313
+ return_tensors="pt",
314
+ )
315
+
316
+ # replace padding with -100 to ignore loss correctly
317
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
318
+
319
+ batch["labels"] = labels
320
+
321
+ return batch
322
+
323
+
324
+ def create_vocabulary_from_data(
325
+ datasets: DatasetDict,
326
+ word_delimiter_token: Optional[str] = None,
327
+ unk_token: Optional[str] = None,
328
+ pad_token: Optional[str] = None,
329
+ ):
330
+ # Given training and test labels create vocabulary
331
+ def extract_all_chars(batch):
332
+ all_text = " ".join(batch["target_text"])
333
+ vocab = list(set(all_text))
334
+ return {"vocab": [vocab], "all_text": [all_text]}
335
+
336
+ vocabs = datasets.map(
337
+ extract_all_chars,
338
+ batched=True,
339
+ batch_size=-1,
340
+ keep_in_memory=True,
341
+ remove_columns=datasets["train"].column_names,
342
+ )
343
+
344
+ # take union of all unique characters in each dataset
345
+ vocab_set = functools.reduce(
346
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
347
+ )
348
+
349
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
350
+
351
+ # replace white space with delimiter token
352
+ if word_delimiter_token is not None:
353
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
354
+ del vocab_dict[" "]
355
+
356
+ # add unk and pad token
357
+ if unk_token is not None:
358
+ vocab_dict[unk_token] = len(vocab_dict)
359
+
360
+ if pad_token is not None:
361
+ vocab_dict[pad_token] = len(vocab_dict)
362
+
363
+ return vocab_dict
364
+
365
+
366
+ def main():
367
+ # See all possible arguments in src/transformers/training_args.py
368
+ # or by passing the --help flag to this script.
369
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
370
+
371
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
372
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
373
+ # If we pass only one argument to the script and it's the path to a json file,
374
+ # let's parse it to get our arguments.
375
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
376
+ else:
377
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
378
+
379
+ # Detecting last checkpoint.
380
+ last_checkpoint = None
381
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
382
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
383
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
384
+ raise ValueError(
385
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
386
+ "Use --overwrite_output_dir to overcome."
387
+ )
388
+ elif last_checkpoint is not None:
389
+ logger.info(
390
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
391
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
392
+ )
393
+
394
+ # Setup logging
395
+ logging.basicConfig(
396
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
397
+ datefmt="%m/%d/%Y %H:%M:%S",
398
+ handlers=[logging.StreamHandler(sys.stdout)],
399
+ )
400
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
401
+
402
+ # Log on each process the small summary:
403
+ logger.warning(
404
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
405
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
406
+ )
407
+ # Set the verbosity to info of the Transformers logger (on main process only):
408
+ if is_main_process(training_args.local_rank):
409
+ transformers.utils.logging.set_verbosity_info()
410
+ logger.info("Training/evaluation parameters %s", training_args)
411
+
412
+ # Set seed before initializing model.
413
+ set_seed(training_args.seed)
414
+
415
+ # 1. First, let's load the dataset
416
+ raw_datasets = DatasetDict()
417
+
418
+ if training_args.do_train:
419
+ raw_datasets["train"] = load_dataset(
420
+ data_args.dataset_name,
421
+ data_args.dataset_config_name,
422
+ split=data_args.train_split_name,
423
+ use_auth_token=data_args.use_auth_token,
424
+ )
425
+
426
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
427
+ raise ValueError(
428
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
429
+ " Make sure to set `--audio_column_name` to the correct audio column - one of"
430
+ f" {', '.join(raw_datasets['train'].column_names)}."
431
+ )
432
+
433
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
434
+ raise ValueError(
435
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
436
+ "Make sure to set `--text_column_name` to the correct text column - one of "
437
+ f"{', '.join(raw_datasets['train'].column_names)}."
438
+ )
439
+
440
+ if data_args.max_train_samples is not None:
441
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
442
+
443
+ if training_args.do_eval:
444
+ raw_datasets["eval"] = load_dataset(
445
+ data_args.dataset_name,
446
+ data_args.dataset_config_name,
447
+ split=data_args.eval_split_name,
448
+ use_auth_token=data_args.use_auth_token,
449
+ )
450
+
451
+ if data_args.max_eval_samples is not None:
452
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
453
+
454
+ # 2. We remove some special characters from the datasets
455
+ # that make training complicated and do not help in transcribing the speech
456
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
457
+ # that could be easily picked up by the model
458
+ chars_to_ignore_regex = (
459
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
460
+ )
461
+ text_column_name = data_args.text_column_name
462
+
463
+ def remove_special_characters(batch):
464
+ if chars_to_ignore_regex is not None:
465
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
466
+ else:
467
+ batch["target_text"] = batch[text_column_name].lower() + " "
468
+ return batch
469
+
470
+ with training_args.main_process_first(desc="dataset map special characters removal"):
471
+ raw_datasets = raw_datasets.map(
472
+ remove_special_characters,
473
+ remove_columns=[text_column_name],
474
+ desc="remove special characters from datasets",
475
+ )
476
+
477
+ # save special tokens for tokenizer
478
+ word_delimiter_token = data_args.word_delimiter_token
479
+ unk_token = data_args.unk_token
480
+ pad_token = data_args.pad_token
481
+
482
+ # 3. Next, let's load the config as we might need it to create
483
+ # the tokenizer
484
+ # load config
485
+ config = AutoConfig.from_pretrained(
486
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
487
+ )
488
+
489
+ # 4. Next, if no tokenizer file is defined,
490
+ # we create the vocabulary of the model by extracting all unique characters from
491
+ # the training and evaluation datasets
492
+ # We need to make sure that only first rank saves vocabulary
493
+ # make sure all processes wait until vocab is created
494
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
495
+ tokenizer_kwargs = {}
496
+ if tokenizer_name_or_path is None:
497
+ # save vocab in training output dir
498
+ tokenizer_name_or_path = training_args.output_dir
499
+
500
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
501
+
502
+ with training_args.main_process_first():
503
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
504
+ try:
505
+ os.remove(vocab_file)
506
+ except OSError:
507
+ # in shared file-systems it might be the case that
508
+ # two processes try to delete the vocab file at the some time
509
+ pass
510
+
511
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
512
+ if not os.path.isfile(vocab_file):
513
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
514
+ vocab_dict = create_vocabulary_from_data(
515
+ raw_datasets,
516
+ word_delimiter_token=word_delimiter_token,
517
+ unk_token=unk_token,
518
+ pad_token=pad_token,
519
+ )
520
+
521
+ # save vocab dict to be loaded into tokenizer
522
+ with open(vocab_file, "w") as file:
523
+ json.dump(vocab_dict, file)
524
+
525
+ # if tokenizer has just been created
526
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
527
+ tokenizer_kwargs = {
528
+ "config": config if config.tokenizer_class is not None else None,
529
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
530
+ "unk_token": unk_token,
531
+ "pad_token": pad_token,
532
+ "word_delimiter_token": word_delimiter_token,
533
+ }
534
+
535
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
536
+ # Note for distributed training, the .from_pretrained methods guarantee that only
537
+ # one local process can concurrently download model & vocab.
538
+
539
+ # load feature_extractor and tokenizer
540
+ tokenizer = AutoTokenizer.from_pretrained(
541
+ tokenizer_name_or_path,
542
+ use_auth_token=data_args.use_auth_token,
543
+ **tokenizer_kwargs,
544
+ )
545
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
546
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
547
+ )
548
+
549
+ # adapt config
550
+ config.update(
551
+ {
552
+ "feat_proj_dropout": model_args.feat_proj_dropout,
553
+ "attention_dropout": model_args.attention_dropout,
554
+ "hidden_dropout": model_args.hidden_dropout,
555
+ "final_dropout": model_args.final_dropout,
556
+ "mask_time_prob": model_args.mask_time_prob,
557
+ "mask_time_length": model_args.mask_time_length,
558
+ "mask_feature_prob": model_args.mask_feature_prob,
559
+ "mask_feature_length": model_args.mask_feature_length,
560
+ "gradient_checkpointing": training_args.gradient_checkpointing,
561
+ "layerdrop": model_args.layerdrop,
562
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
563
+ "pad_token_id": tokenizer.pad_token_id,
564
+ "vocab_size": len(tokenizer),
565
+ "activation_dropout": model_args.activation_dropout,
566
+ }
567
+ )
568
+
569
+ # create model
570
+ model = AutoModelForCTC.from_pretrained(
571
+ model_args.model_name_or_path,
572
+ cache_dir=model_args.cache_dir,
573
+ config=config,
574
+ use_auth_token=data_args.use_auth_token,
575
+ )
576
+
577
+ # freeze encoder
578
+ if model_args.freeze_feature_encoder:
579
+ model.freeze_feature_encoder()
580
+
581
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
582
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
583
+ # so that we just need to set the correct target sampling rate and normalize the input
584
+ # via the `feature_extractor`
585
+
586
+ # make sure that dataset decodes audio with correct sampling rate
587
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
588
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
589
+ raw_datasets = raw_datasets.cast_column(
590
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
591
+ )
592
+
593
+ # derive max & min input length for sample rate & max duration
594
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
595
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
596
+ audio_column_name = data_args.audio_column_name
597
+ num_workers = data_args.preprocessing_num_workers
598
+
599
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
600
+ phoneme_language = data_args.phoneme_language
601
+
602
+ # Preprocessing the datasets.
603
+ # We need to read the audio files as arrays and tokenize the targets.
604
+ def prepare_dataset(batch):
605
+ # load audio
606
+ sample = batch[audio_column_name]
607
+
608
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
609
+ batch["input_values"] = inputs.input_values[0]
610
+ batch["input_length"] = len(batch["input_values"])
611
+
612
+ # encode targets
613
+ additional_kwargs = {}
614
+ if phoneme_language is not None:
615
+ additional_kwargs["phonemizer_lang"] = phoneme_language
616
+
617
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
618
+ return batch
619
+
620
+ with training_args.main_process_first(desc="dataset map preprocessing"):
621
+ vectorized_datasets = raw_datasets.map(
622
+ prepare_dataset,
623
+ remove_columns=next(iter(raw_datasets.values())).column_names,
624
+ num_proc=num_workers,
625
+ desc="preprocess datasets",
626
+ )
627
+
628
+ def is_audio_in_length_range(length):
629
+ return length > min_input_length and length < max_input_length
630
+
631
+ # filter data that is shorter than min_input_length
632
+ vectorized_datasets = vectorized_datasets.filter(
633
+ is_audio_in_length_range,
634
+ num_proc=num_workers,
635
+ input_columns=["input_length"],
636
+ )
637
+
638
+ # 7. Next, we can prepare the training.
639
+ # Let's use word error rate (WER) as our evaluation metric,
640
+ # instantiate a data collator and the trainer
641
+
642
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
643
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
644
+
645
+ # for large datasets it is advised to run the preprocessing on a
646
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
647
+ # be a timeout when running the script in distributed mode.
648
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
649
+ # cached dataset
650
+ if data_args.preprocessing_only:
651
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
652
+ return
653
+
654
+ def compute_metrics(pred):
655
+ pred_logits = pred.predictions
656
+ pred_ids = np.argmax(pred_logits, axis=-1)
657
+
658
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
659
+
660
+ pred_str = tokenizer.batch_decode(pred_ids)
661
+ # we do not want to group tokens when computing the metrics
662
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
663
+
664
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
665
+
666
+ return metrics
667
+
668
+ # Now save everything to be able to create a single processor later
669
+ if is_main_process(training_args.local_rank):
670
+ # save feature extractor, tokenizer and config
671
+ feature_extractor.save_pretrained(training_args.output_dir)
672
+ tokenizer.save_pretrained(training_args.output_dir)
673
+ config.save_pretrained(training_args.output_dir)
674
+
675
+ try:
676
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
677
+ except (OSError, KeyError):
678
+ warnings.warn(
679
+ "Loading a processor from a feature extractor config that does not"
680
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
681
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
682
+ " `'processor_class': 'Wav2Vec2Processor'`",
683
+ FutureWarning,
684
+ )
685
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
686
+
687
+ # Instantiate custom data collator
688
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
689
+
690
+ # Initialize Trainer
691
+ trainer = Trainer(
692
+ model=model,
693
+ data_collator=data_collator,
694
+ args=training_args,
695
+ compute_metrics=compute_metrics,
696
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
697
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
698
+ tokenizer=feature_extractor,
699
+ )
700
+
701
+ # 8. Finally, we can start training
702
+
703
+ # Training
704
+ if training_args.do_train:
705
+
706
+ # use last checkpoint if exist
707
+ if last_checkpoint is not None:
708
+ checkpoint = last_checkpoint
709
+ elif os.path.isdir(model_args.model_name_or_path):
710
+ checkpoint = model_args.model_name_or_path
711
+ else:
712
+ checkpoint = None
713
+
714
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
715
+ trainer.save_model()
716
+
717
+ metrics = train_result.metrics
718
+ max_train_samples = (
719
+ data_args.max_train_samples
720
+ if data_args.max_train_samples is not None
721
+ else len(vectorized_datasets["train"])
722
+ )
723
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
724
+
725
+ trainer.log_metrics("train", metrics)
726
+ trainer.save_metrics("train", metrics)
727
+ trainer.save_state()
728
+
729
+ # Evaluation
730
+ results = {}
731
+ if training_args.do_eval:
732
+ logger.info("*** Evaluate ***")
733
+ metrics = trainer.evaluate()
734
+ max_eval_samples = (
735
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
736
+ )
737
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
738
+
739
+ trainer.log_metrics("eval", metrics)
740
+ trainer.save_metrics("eval", metrics)
741
+
742
+ # Write model card and (optionally) push to hub
743
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
744
+ kwargs = {
745
+ "finetuned_from": model_args.model_name_or_path,
746
+ "tasks": "speech-recognition",
747
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
748
+ "dataset_args": (
749
+ f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
750
+ f" {data_args.eval_split_name}"
751
+ ),
752
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
753
+ }
754
+ if "common_voice" in data_args.dataset_name:
755
+ kwargs["language"] = config_name
756
+
757
+ if training_args.push_to_hub:
758
+ trainer.push_to_hub(**kwargs)
759
+ else:
760
+ trainer.create_model_card(**kwargs)
761
+
762
+ return results
763
+
764
+
765
+ if __name__ == "__main__":
766
+ main()
runs/May30_06-41-10_gpu-x1-k80-westeu/1653892980.4963415/events.out.tfevents.1653892980.gpu-x1-k80-westeu.99693.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e7bf44e324e4bbf982368f3158510303ac061409c9b733a9bc2327a09b33ef5
3
+ size 5192
runs/May30_06-41-10_gpu-x1-k80-westeu/events.out.tfevents.1653892980.gpu-x1-k80-westeu.99693.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aee627510a3bbd6c3a19a0c18f2c410f02ca89c41ca6b77d27d437bf45eefbe0
3
+ size 40
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "replace_word_delimiter_char": " ", "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa0080dbad16e79d6acce1335b6c215520a34a1d331b524358e66cb91a3151e
3
+ size 3247
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"!": 1, ",": 2, "-": 3, ".": 4, ":": 5, ";": 6, "?": 7, "а": 8, "б": 9, "в": 10, "г": 11, "д": 12, "е": 13, "ж": 14, "з": 15, "и": 16, "к": 17, "л": 18, "м": 19, "н": 20, "о": 21, "п": 22, "р": 23, "с": 24, "т": 25, "у": 26, "ф": 27, "х": 28, "ц": 29, "ч": 30, "ш": 31, "ы": 32, "ь": 33, "џ": 34, "қ": 35, "ҟ": 36, "ҩ": 37, "ҭ": 38, "ҳ": 39, "ҵ": 40, "ҷ": 41, "ҽ": 42, "ҿ": 43, "ә": 44, "ӡ": 45, "ӷ": 46, "ԥ": 47, "–": 48, "|": 0, "[UNK]": 49, "[PAD]": 50}