--- base_model: mistralai/Mistral-7B-Instruct-v0.3 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: pgd_mistral_8bits_lr3.0000000000000004e-05_bs2_ep5_alpha32_rk4_do0.3_wd3.0e-04 results: [] --- # pgd_mistral_8bits_lr3.0000000000000004e-05_bs2_ep5_alpha32_rk4_do0.3_wd3.0e-04 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.0000000000000004e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8635 | 0.9778 | 33 | 2.2032 | | 1.6403 | 1.9852 | 67 | 1.2905 | | 1.0775 | 2.9926 | 101 | 1.0257 | | 0.9356 | 4.0 | 135 | 0.9717 | | 0.9174 | 4.8889 | 165 | 0.9577 | ### Framework versions - PEFT 0.12.0 - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1