nemuwn commited on
Commit
e3f025b
1 Parent(s): 59c5f06

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: xlm-roberta-base-mongolian-ner
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # xlm-roberta-base-mongolian-ner
21
+
22
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1166
25
+ - Precision: 0.9251
26
+ - Recall: 0.9335
27
+ - F1: 0.9293
28
+ - Accuracy: 0.9787
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.2013 | 1.0 | 477 | 0.0958 | 0.8951 | 0.9124 | 0.9037 | 0.9731 |
60
+ | 0.0846 | 2.0 | 954 | 0.0825 | 0.9155 | 0.9240 | 0.9197 | 0.9774 |
61
+ | 0.0622 | 3.0 | 1431 | 0.0844 | 0.9109 | 0.9235 | 0.9172 | 0.9766 |
62
+ | 0.0456 | 4.0 | 1908 | 0.0940 | 0.9174 | 0.9266 | 0.9220 | 0.9767 |
63
+ | 0.0347 | 5.0 | 2385 | 0.1015 | 0.9184 | 0.9284 | 0.9234 | 0.9770 |
64
+ | 0.0253 | 6.0 | 2862 | 0.1117 | 0.9174 | 0.9254 | 0.9214 | 0.9764 |
65
+ | 0.0203 | 7.0 | 3339 | 0.1147 | 0.9225 | 0.9310 | 0.9267 | 0.9780 |
66
+ | 0.0152 | 8.0 | 3816 | 0.1129 | 0.9229 | 0.9316 | 0.9272 | 0.9779 |
67
+ | 0.0129 | 9.0 | 4293 | 0.1150 | 0.9245 | 0.9324 | 0.9285 | 0.9784 |
68
+ | 0.0102 | 10.0 | 4770 | 0.1166 | 0.9251 | 0.9335 | 0.9293 | 0.9787 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.28.0
74
+ - Pytorch 2.0.1+cu118
75
+ - Datasets 2.12.0
76
+ - Tokenizers 0.13.3