Next
commited on
Commit
•
96eb9b3
1
Parent(s):
690504e
Create pipeline.py
Browse files- pipeline.py +770 -0
pipeline.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import parselmouth
|
8 |
+
import torchcrepe
|
9 |
+
import pyworld
|
10 |
+
import faiss
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
from scipy import signal
|
14 |
+
from functools import lru_cache
|
15 |
+
from torch import Tensor
|
16 |
+
|
17 |
+
now_dir = os.getcwd()
|
18 |
+
sys.path.append(now_dir)
|
19 |
+
from rvc.lib.predictors.RMVPE import RMVPE0Predictor
|
20 |
+
from rvc.lib.predictors.FCPE import FCPEF0Predictor
|
21 |
+
|
22 |
+
|
23 |
+
# Constants for high-pass filter
|
24 |
+
FILTER_ORDER = 5
|
25 |
+
CUTOFF_FREQUENCY = 48 # Hz
|
26 |
+
SAMPLE_RATE = 16000 # Hz
|
27 |
+
bh, ah = signal.butter(
|
28 |
+
N=FILTER_ORDER, Wn=CUTOFF_FREQUENCY, btype="high", fs=SAMPLE_RATE
|
29 |
+
)
|
30 |
+
|
31 |
+
input_audio_path2wav = {}
|
32 |
+
|
33 |
+
|
34 |
+
class AudioProcessor:
|
35 |
+
"""
|
36 |
+
A class for processing audio signals, specifically for adjusting RMS levels.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def change_rms(
|
40 |
+
source_audio: np.ndarray,
|
41 |
+
source_rate: int,
|
42 |
+
target_audio: np.ndarray,
|
43 |
+
target_rate: int,
|
44 |
+
rate: float,
|
45 |
+
) -> np.ndarray:
|
46 |
+
"""
|
47 |
+
Adjust the RMS level of target_audio to match the RMS of source_audio, with a given blending rate.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
source_audio: The source audio signal as a NumPy array.
|
51 |
+
source_rate: The sampling rate of the source audio.
|
52 |
+
target_audio: The target audio signal to adjust.
|
53 |
+
target_rate: The sampling rate of the target audio.
|
54 |
+
rate: The blending rate between the source and target RMS levels.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
The adjusted target audio signal with RMS level modified to match the source audio.
|
58 |
+
"""
|
59 |
+
# Calculate RMS of both audio data
|
60 |
+
rms1 = librosa.feature.rms(
|
61 |
+
y=source_audio,
|
62 |
+
frame_length=source_rate // 2 * 2,
|
63 |
+
hop_length=source_rate // 2,
|
64 |
+
)
|
65 |
+
rms2 = librosa.feature.rms(
|
66 |
+
y=target_audio,
|
67 |
+
frame_length=target_rate // 2 * 2,
|
68 |
+
hop_length=target_rate // 2,
|
69 |
+
)
|
70 |
+
|
71 |
+
# Interpolate RMS to match target audio length
|
72 |
+
rms1 = F.interpolate(
|
73 |
+
torch.from_numpy(rms1).float().unsqueeze(0),
|
74 |
+
size=target_audio.shape[0],
|
75 |
+
mode="linear",
|
76 |
+
).squeeze()
|
77 |
+
rms2 = F.interpolate(
|
78 |
+
torch.from_numpy(rms2).float().unsqueeze(0),
|
79 |
+
size=target_audio.shape[0],
|
80 |
+
mode="linear",
|
81 |
+
).squeeze()
|
82 |
+
rms2 = torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6)
|
83 |
+
|
84 |
+
# Adjust target audio RMS based on the source audio RMS
|
85 |
+
adjusted_audio = (
|
86 |
+
target_audio
|
87 |
+
* (torch.pow(rms1, 1 - rate) * torch.pow(rms2, rate - 1)).numpy()
|
88 |
+
)
|
89 |
+
return adjusted_audio
|
90 |
+
|
91 |
+
|
92 |
+
class Autotune:
|
93 |
+
"""
|
94 |
+
A class for applying autotune to a given fundamental frequency (F0) contour.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, ref_freqs):
|
98 |
+
"""
|
99 |
+
Initializes the Autotune class with a set of reference frequencies.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
ref_freqs: A list of reference frequencies representing musical notes.
|
103 |
+
"""
|
104 |
+
self.ref_freqs = ref_freqs
|
105 |
+
self.note_dict = self.generate_interpolated_frequencies()
|
106 |
+
|
107 |
+
def generate_interpolated_frequencies(self):
|
108 |
+
"""
|
109 |
+
Generates a dictionary of interpolated frequencies between reference frequencies.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
A list of interpolated frequencies, including the original reference frequencies.
|
113 |
+
"""
|
114 |
+
note_dict = []
|
115 |
+
for i in range(len(self.ref_freqs) - 1):
|
116 |
+
freq_low = self.ref_freqs[i]
|
117 |
+
freq_high = self.ref_freqs[i + 1]
|
118 |
+
interpolated_freqs = np.linspace(
|
119 |
+
freq_low, freq_high, num=10, endpoint=False
|
120 |
+
)
|
121 |
+
note_dict.extend(interpolated_freqs)
|
122 |
+
note_dict.append(self.ref_freqs[-1])
|
123 |
+
return note_dict
|
124 |
+
|
125 |
+
def autotune_f0(self, f0):
|
126 |
+
"""
|
127 |
+
Autotunes a given F0 contour by snapping each frequency to the closest reference frequency.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
f0: The input F0 contour as a NumPy array.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
The autotuned F0 contour.
|
134 |
+
"""
|
135 |
+
autotuned_f0 = np.zeros_like(f0)
|
136 |
+
for i, freq in enumerate(f0):
|
137 |
+
closest_note = min(self.note_dict, key=lambda x: abs(x - freq))
|
138 |
+
autotuned_f0[i] = closest_note
|
139 |
+
return autotuned_f0
|
140 |
+
|
141 |
+
|
142 |
+
class Pipeline:
|
143 |
+
"""
|
144 |
+
The main pipeline class for performing voice conversion, including preprocessing, F0 estimation,
|
145 |
+
voice conversion using a model, and post-processing.
|
146 |
+
"""
|
147 |
+
|
148 |
+
def __init__(self, tgt_sr, config):
|
149 |
+
"""
|
150 |
+
Initializes the Pipeline class with target sampling rate and configuration parameters.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
tgt_sr: The target sampling rate for the output audio.
|
154 |
+
config: A configuration object containing various parameters for the pipeline.
|
155 |
+
"""
|
156 |
+
self.x_pad = config.x_pad
|
157 |
+
self.x_query = config.x_query
|
158 |
+
self.x_center = config.x_center
|
159 |
+
self.x_max = config.x_max
|
160 |
+
self.is_half = config.is_half
|
161 |
+
self.sample_rate = 16000
|
162 |
+
self.window = 160
|
163 |
+
self.t_pad = self.sample_rate * self.x_pad
|
164 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
165 |
+
self.t_pad2 = self.t_pad * 2
|
166 |
+
self.t_query = self.sample_rate * self.x_query
|
167 |
+
self.t_center = self.sample_rate * self.x_center
|
168 |
+
self.t_max = self.sample_rate * self.x_max
|
169 |
+
self.time_step = self.window / self.sample_rate * 1000
|
170 |
+
self.f0_min = 50
|
171 |
+
self.f0_max = 1100
|
172 |
+
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
173 |
+
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
174 |
+
self.device = config.device
|
175 |
+
self.ref_freqs = [
|
176 |
+
65.41,
|
177 |
+
82.41,
|
178 |
+
110.00,
|
179 |
+
146.83,
|
180 |
+
196.00,
|
181 |
+
246.94,
|
182 |
+
329.63,
|
183 |
+
440.00,
|
184 |
+
587.33,
|
185 |
+
783.99,
|
186 |
+
1046.50,
|
187 |
+
]
|
188 |
+
self.autotune = Autotune(self.ref_freqs)
|
189 |
+
self.note_dict = self.autotune.note_dict
|
190 |
+
|
191 |
+
@staticmethod
|
192 |
+
@lru_cache
|
193 |
+
def get_f0_harvest(input_audio_path, fs, f0max, f0min, frame_period):
|
194 |
+
"""
|
195 |
+
Estimates the fundamental frequency (F0) of a given audio file using the Harvest algorithm.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
input_audio_path: Path to the input audio file.
|
199 |
+
fs: Sampling rate of the audio file.
|
200 |
+
f0max: Maximum F0 value to consider.
|
201 |
+
f0min: Minimum F0 value to consider.
|
202 |
+
frame_period: Frame period in milliseconds for F0 analysis.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
The estimated F0 contour as a NumPy array.
|
206 |
+
"""
|
207 |
+
audio = input_audio_path2wav[input_audio_path]
|
208 |
+
f0, t = pyworld.harvest(
|
209 |
+
audio,
|
210 |
+
fs=fs,
|
211 |
+
f0_ceil=f0max,
|
212 |
+
f0_floor=f0min,
|
213 |
+
frame_period=frame_period,
|
214 |
+
)
|
215 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
216 |
+
return f0
|
217 |
+
|
218 |
+
def get_f0_crepe(
|
219 |
+
self,
|
220 |
+
x,
|
221 |
+
f0_min,
|
222 |
+
f0_max,
|
223 |
+
p_len,
|
224 |
+
hop_length,
|
225 |
+
model="full",
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Estimates the fundamental frequency (F0) of a given audio signal using the Crepe model.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
x: The input audio signal as a NumPy array.
|
232 |
+
f0_min: Minimum F0 value to consider.
|
233 |
+
f0_max: Maximum F0 value to consider.
|
234 |
+
p_len: Desired length of the F0 output.
|
235 |
+
hop_length: Hop length for the Crepe model.
|
236 |
+
model: Crepe model size to use ("full" or "tiny").
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
The estimated F0 contour as a NumPy array.
|
240 |
+
"""
|
241 |
+
x = x.astype(np.float32)
|
242 |
+
x /= np.quantile(np.abs(x), 0.999)
|
243 |
+
audio = torch.from_numpy(x).to(self.device, copy=True)
|
244 |
+
audio = torch.unsqueeze(audio, dim=0)
|
245 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
246 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
247 |
+
audio = audio.detach()
|
248 |
+
pitch: Tensor = torchcrepe.predict(
|
249 |
+
audio,
|
250 |
+
self.sample_rate,
|
251 |
+
hop_length,
|
252 |
+
f0_min,
|
253 |
+
f0_max,
|
254 |
+
model,
|
255 |
+
batch_size=hop_length * 2,
|
256 |
+
device=self.device,
|
257 |
+
pad=True,
|
258 |
+
)
|
259 |
+
p_len = p_len or x.shape[0] // hop_length
|
260 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
261 |
+
source[source < 0.001] = np.nan
|
262 |
+
target = np.interp(
|
263 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
264 |
+
np.arange(0, len(source)),
|
265 |
+
source,
|
266 |
+
)
|
267 |
+
f0 = np.nan_to_num(target)
|
268 |
+
return f0
|
269 |
+
|
270 |
+
def get_f0_hybrid(
|
271 |
+
self,
|
272 |
+
methods_str,
|
273 |
+
x,
|
274 |
+
f0_min,
|
275 |
+
f0_max,
|
276 |
+
p_len,
|
277 |
+
hop_length,
|
278 |
+
):
|
279 |
+
"""
|
280 |
+
Estimates the fundamental frequency (F0) using a hybrid approach combining multiple methods.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
methods_str: A string specifying the methods to combine (e.g., "hybrid[crepe+rmvpe]").
|
284 |
+
x: The input audio signal as a NumPy array.
|
285 |
+
f0_min: Minimum F0 value to consider.
|
286 |
+
f0_max: Maximum F0 value to consider.
|
287 |
+
p_len: Desired length of the F0 output.
|
288 |
+
hop_length: Hop length for F0 estimation methods.
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
The estimated F0 contour as a NumPy array, obtained by combining the specified methods.
|
292 |
+
"""
|
293 |
+
methods_str = re.search("hybrid\[(.+)\]", methods_str)
|
294 |
+
if methods_str:
|
295 |
+
methods = [method.strip() for method in methods_str.group(1).split("+")]
|
296 |
+
f0_computation_stack = []
|
297 |
+
print(f"Calculating f0 pitch estimations for methods {str(methods)}")
|
298 |
+
x = x.astype(np.float32)
|
299 |
+
x /= np.quantile(np.abs(x), 0.999)
|
300 |
+
for method in methods:
|
301 |
+
f0 = None
|
302 |
+
if method == "crepe":
|
303 |
+
f0 = self.get_f0_crepe_computation(
|
304 |
+
x, f0_min, f0_max, p_len, int(hop_length)
|
305 |
+
)
|
306 |
+
elif method == "rmvpe":
|
307 |
+
self.model_rmvpe = RMVPE0Predictor(
|
308 |
+
os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
|
309 |
+
is_half=self.is_half,
|
310 |
+
device=self.device,
|
311 |
+
)
|
312 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
313 |
+
f0 = f0[1:]
|
314 |
+
elif method == "fcpe":
|
315 |
+
self.model_fcpe = FCPEF0Predictor(
|
316 |
+
os.path.join("rvc", "models", "predictors", "fcpe.pt"),
|
317 |
+
f0_min=int(f0_min),
|
318 |
+
f0_max=int(f0_max),
|
319 |
+
dtype=torch.float32,
|
320 |
+
device=self.device,
|
321 |
+
sampling_rate=self.sample_rate,
|
322 |
+
threshold=0.03,
|
323 |
+
)
|
324 |
+
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
|
325 |
+
del self.model_fcpe
|
326 |
+
gc.collect()
|
327 |
+
f0_computation_stack.append(f0)
|
328 |
+
|
329 |
+
f0_computation_stack = [fc for fc in f0_computation_stack if fc is not None]
|
330 |
+
f0_median_hybrid = None
|
331 |
+
if len(f0_computation_stack) == 1:
|
332 |
+
f0_median_hybrid = f0_computation_stack[0]
|
333 |
+
else:
|
334 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
335 |
+
return f0_median_hybrid
|
336 |
+
|
337 |
+
def get_f0(
|
338 |
+
self,
|
339 |
+
input_audio_path,
|
340 |
+
x,
|
341 |
+
p_len,
|
342 |
+
f0_up_key,
|
343 |
+
f0_method,
|
344 |
+
filter_radius,
|
345 |
+
hop_length,
|
346 |
+
f0_autotune,
|
347 |
+
inp_f0=None,
|
348 |
+
):
|
349 |
+
"""
|
350 |
+
Estimates the fundamental frequency (F0) of a given audio signal using various methods.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
input_audio_path: Path to the input audio file.
|
354 |
+
x: The input audio signal as a NumPy array.
|
355 |
+
p_len: Desired length of the F0 output.
|
356 |
+
f0_up_key: Key to adjust the pitch of the F0 contour.
|
357 |
+
f0_method: Method to use for F0 estimation (e.g., "pm", "harvest", "crepe").
|
358 |
+
filter_radius: Radius for median filtering the F0 contour.
|
359 |
+
hop_length: Hop length for F0 estimation methods.
|
360 |
+
f0_autotune: Whether to apply autotune to the F0 contour.
|
361 |
+
inp_f0: Optional input F0 contour to use instead of estimating.
|
362 |
+
|
363 |
+
Returns:
|
364 |
+
A tuple containing the quantized F0 contour and the original F0 contour.
|
365 |
+
"""
|
366 |
+
global input_audio_path2wav
|
367 |
+
if f0_method == "pm":
|
368 |
+
f0 = (
|
369 |
+
parselmouth.Sound(x, self.sample_rate)
|
370 |
+
.to_pitch_ac(
|
371 |
+
time_step=self.time_step / 1000,
|
372 |
+
voicing_threshold=0.6,
|
373 |
+
pitch_floor=self.f0_min,
|
374 |
+
pitch_ceiling=self.f0_max,
|
375 |
+
)
|
376 |
+
.selected_array["frequency"]
|
377 |
+
)
|
378 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
379 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
380 |
+
f0 = np.pad(
|
381 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
382 |
+
)
|
383 |
+
elif f0_method == "harvest":
|
384 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
385 |
+
f0 = self.get_f0_harvest(
|
386 |
+
input_audio_path, self.sample_rate, self.f0_max, self.f0_min, 10
|
387 |
+
)
|
388 |
+
if int(filter_radius) > 2:
|
389 |
+
f0 = signal.medfilt(f0, 3)
|
390 |
+
elif f0_method == "dio":
|
391 |
+
f0, t = pyworld.dio(
|
392 |
+
x.astype(np.double),
|
393 |
+
fs=self.sample_rate,
|
394 |
+
f0_ceil=self.f0_max,
|
395 |
+
f0_floor=self.f0_min,
|
396 |
+
frame_period=10,
|
397 |
+
)
|
398 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sample_rate)
|
399 |
+
f0 = signal.medfilt(f0, 3)
|
400 |
+
elif f0_method == "crepe":
|
401 |
+
f0 = self.get_f0_crepe(x, self.f0_min, self.f0_max, p_len, int(hop_length))
|
402 |
+
elif f0_method == "crepe-tiny":
|
403 |
+
f0 = self.get_f0_crepe(
|
404 |
+
x, self.f0_min, self.f0_max, p_len, int(hop_length), "tiny"
|
405 |
+
)
|
406 |
+
elif f0_method == "rmvpe":
|
407 |
+
self.model_rmvpe = RMVPE0Predictor(
|
408 |
+
os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
|
409 |
+
is_half=self.is_half,
|
410 |
+
device=self.device,
|
411 |
+
)
|
412 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
413 |
+
elif f0_method == "fcpe":
|
414 |
+
self.model_fcpe = FCPEF0Predictor(
|
415 |
+
os.path.join("rvc", "models", "predictors", "fcpe.pt"),
|
416 |
+
f0_min=int(self.f0_min),
|
417 |
+
f0_max=int(self.f0_max),
|
418 |
+
dtype=torch.float32,
|
419 |
+
device=self.device,
|
420 |
+
sampling_rate=self.sample_rate,
|
421 |
+
threshold=0.03,
|
422 |
+
)
|
423 |
+
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
|
424 |
+
del self.model_fcpe
|
425 |
+
gc.collect()
|
426 |
+
elif "hybrid" in f0_method:
|
427 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
428 |
+
f0 = self.get_f0_hybrid(
|
429 |
+
f0_method,
|
430 |
+
x,
|
431 |
+
self.f0_min,
|
432 |
+
self.f0_max,
|
433 |
+
p_len,
|
434 |
+
hop_length,
|
435 |
+
)
|
436 |
+
|
437 |
+
if f0_autotune == "True":
|
438 |
+
f0 = Autotune.autotune_f0(self, f0)
|
439 |
+
|
440 |
+
f0 *= pow(2, f0_up_key / 12)
|
441 |
+
tf0 = self.sample_rate // self.window
|
442 |
+
if inp_f0 is not None:
|
443 |
+
delta_t = np.round(
|
444 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
445 |
+
).astype("int16")
|
446 |
+
replace_f0 = np.interp(
|
447 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
448 |
+
)
|
449 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
450 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
451 |
+
:shape
|
452 |
+
]
|
453 |
+
f0bak = f0.copy()
|
454 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
455 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
456 |
+
self.f0_mel_max - self.f0_mel_min
|
457 |
+
) + 1
|
458 |
+
f0_mel[f0_mel <= 1] = 1
|
459 |
+
f0_mel[f0_mel > 255] = 255
|
460 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
461 |
+
|
462 |
+
return f0_coarse, f0bak
|
463 |
+
|
464 |
+
def voice_conversion(
|
465 |
+
self,
|
466 |
+
model,
|
467 |
+
net_g,
|
468 |
+
sid,
|
469 |
+
audio0,
|
470 |
+
pitch,
|
471 |
+
pitchf,
|
472 |
+
index,
|
473 |
+
big_npy,
|
474 |
+
index_rate,
|
475 |
+
version,
|
476 |
+
protect,
|
477 |
+
):
|
478 |
+
"""
|
479 |
+
Performs voice conversion on a given audio segment.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
model: The feature extractor model.
|
483 |
+
net_g: The generative model for synthesizing speech.
|
484 |
+
sid: Speaker ID for the target voice.
|
485 |
+
audio0: The input audio segment.
|
486 |
+
pitch: Quantized F0 contour for pitch guidance.
|
487 |
+
pitchf: Original F0 contour for pitch guidance.
|
488 |
+
index: FAISS index for speaker embedding retrieval.
|
489 |
+
big_npy: Speaker embeddings stored in a NumPy array.
|
490 |
+
index_rate: Blending rate for speaker embedding retrieval.
|
491 |
+
version: Model version ("v1" or "v2").
|
492 |
+
protect: Protection level for preserving the original pitch.
|
493 |
+
|
494 |
+
Returns:
|
495 |
+
The voice-converted audio segment.
|
496 |
+
"""
|
497 |
+
feats = torch.from_numpy(audio0)
|
498 |
+
if self.is_half:
|
499 |
+
feats = feats.half()
|
500 |
+
else:
|
501 |
+
feats = feats.float()
|
502 |
+
if feats.dim() == 2:
|
503 |
+
feats = feats.mean(-1)
|
504 |
+
assert feats.dim() == 1, feats.dim()
|
505 |
+
feats = feats.view(1, -1)
|
506 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
507 |
+
|
508 |
+
inputs = {
|
509 |
+
"source": feats.to(self.device),
|
510 |
+
"padding_mask": padding_mask,
|
511 |
+
"output_layer": 9 if version == "v1" else 12,
|
512 |
+
}
|
513 |
+
with torch.no_grad():
|
514 |
+
logits = model.extract_features(**inputs)
|
515 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
516 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
517 |
+
feats0 = feats.clone()
|
518 |
+
if (
|
519 |
+
isinstance(index, type(None)) == False
|
520 |
+
and isinstance(big_npy, type(None)) == False
|
521 |
+
and index_rate != 0
|
522 |
+
):
|
523 |
+
npy = feats[0].cpu().numpy()
|
524 |
+
if self.is_half:
|
525 |
+
npy = npy.astype("float32")
|
526 |
+
|
527 |
+
score, ix = index.search(npy, k=8)
|
528 |
+
weight = np.square(1 / score)
|
529 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
530 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
531 |
+
|
532 |
+
if self.is_half:
|
533 |
+
npy = npy.astype("float16")
|
534 |
+
feats = (
|
535 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
536 |
+
+ (1 - index_rate) * feats
|
537 |
+
)
|
538 |
+
|
539 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
540 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
541 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
542 |
+
0, 2, 1
|
543 |
+
)
|
544 |
+
p_len = audio0.shape[0] // self.window
|
545 |
+
if feats.shape[1] < p_len:
|
546 |
+
p_len = feats.shape[1]
|
547 |
+
if pitch != None and pitchf != None:
|
548 |
+
pitch = pitch[:, :p_len]
|
549 |
+
pitchf = pitchf[:, :p_len]
|
550 |
+
|
551 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
552 |
+
pitchff = pitchf.clone()
|
553 |
+
pitchff[pitchf > 0] = 1
|
554 |
+
pitchff[pitchf < 1] = protect
|
555 |
+
pitchff = pitchff.unsqueeze(-1)
|
556 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
557 |
+
feats = feats.to(feats0.dtype)
|
558 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
559 |
+
with torch.no_grad():
|
560 |
+
if pitch != None and pitchf != None:
|
561 |
+
audio1 = (
|
562 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
563 |
+
.data.cpu()
|
564 |
+
.float()
|
565 |
+
.numpy()
|
566 |
+
)
|
567 |
+
else:
|
568 |
+
audio1 = (
|
569 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
570 |
+
)
|
571 |
+
del feats, p_len, padding_mask
|
572 |
+
if torch.cuda.is_available():
|
573 |
+
torch.cuda.empty_cache()
|
574 |
+
return audio1
|
575 |
+
|
576 |
+
def pipeline(
|
577 |
+
self,
|
578 |
+
model,
|
579 |
+
net_g,
|
580 |
+
sid,
|
581 |
+
audio,
|
582 |
+
input_audio_path,
|
583 |
+
f0_up_key,
|
584 |
+
f0_method,
|
585 |
+
file_index,
|
586 |
+
index_rate,
|
587 |
+
pitch_guidance,
|
588 |
+
filter_radius,
|
589 |
+
tgt_sr,
|
590 |
+
resample_sr,
|
591 |
+
rms_mix_rate,
|
592 |
+
version,
|
593 |
+
protect,
|
594 |
+
hop_length,
|
595 |
+
f0_autotune,
|
596 |
+
f0_file,
|
597 |
+
):
|
598 |
+
"""
|
599 |
+
The main pipeline function for performing voice conversion.
|
600 |
+
|
601 |
+
Args:
|
602 |
+
model: The feature extractor model.
|
603 |
+
net_g: The generative model for synthesizing speech.
|
604 |
+
sid: Speaker ID for the target voice.
|
605 |
+
audio: The input audio signal.
|
606 |
+
input_audio_path: Path to the input audio file.
|
607 |
+
f0_up_key: Key to adjust the pitch of the F0 contour.
|
608 |
+
f0_method: Method to use for F0 estimation.
|
609 |
+
file_index: Path to the FAISS index file for speaker embedding retrieval.
|
610 |
+
index_rate: Blending rate for speaker embedding retrieval.
|
611 |
+
pitch_guidance: Whether to use pitch guidance during voice conversion.
|
612 |
+
filter_radius: Radius for median filtering the F0 contour.
|
613 |
+
tgt_sr: Target sampling rate for the output audio.
|
614 |
+
resample_sr: Resampling rate for the output audio.
|
615 |
+
rms_mix_rate: Blending rate for adjusting the RMS level of the output audio.
|
616 |
+
version: Model version.
|
617 |
+
protect: Protection level for preserving the original pitch.
|
618 |
+
hop_length: Hop length for F0 estimation methods.
|
619 |
+
f0_autotune: Whether to apply autotune to the F0 contour.
|
620 |
+
f0_file: Path to a file containing an F0 contour to use.
|
621 |
+
|
622 |
+
Returns:
|
623 |
+
The voice-converted audio signal.
|
624 |
+
"""
|
625 |
+
if file_index != "" and os.path.exists(file_index) == True and index_rate != 0:
|
626 |
+
try:
|
627 |
+
index = faiss.read_index(file_index)
|
628 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
629 |
+
except Exception as error:
|
630 |
+
print(error)
|
631 |
+
index = big_npy = None
|
632 |
+
else:
|
633 |
+
index = big_npy = None
|
634 |
+
audio = signal.filtfilt(bh, ah, audio)
|
635 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
636 |
+
opt_ts = []
|
637 |
+
if audio_pad.shape[0] > self.t_max:
|
638 |
+
audio_sum = np.zeros_like(audio)
|
639 |
+
for i in range(self.window):
|
640 |
+
audio_sum += audio_pad[i : i - self.window]
|
641 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
642 |
+
opt_ts.append(
|
643 |
+
t
|
644 |
+
- self.t_query
|
645 |
+
+ np.where(
|
646 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
647 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
648 |
+
)[0][0]
|
649 |
+
)
|
650 |
+
s = 0
|
651 |
+
audio_opt = []
|
652 |
+
t = None
|
653 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
654 |
+
p_len = audio_pad.shape[0] // self.window
|
655 |
+
inp_f0 = None
|
656 |
+
if hasattr(f0_file, "name") == True:
|
657 |
+
try:
|
658 |
+
with open(f0_file.name, "r") as f:
|
659 |
+
lines = f.read().strip("\n").split("\n")
|
660 |
+
inp_f0 = []
|
661 |
+
for line in lines:
|
662 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
663 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
664 |
+
except Exception as error:
|
665 |
+
print(error)
|
666 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
667 |
+
pitch, pitchf = None, None
|
668 |
+
if pitch_guidance == 1:
|
669 |
+
pitch, pitchf = self.get_f0(
|
670 |
+
input_audio_path,
|
671 |
+
audio_pad,
|
672 |
+
p_len,
|
673 |
+
f0_up_key,
|
674 |
+
f0_method,
|
675 |
+
filter_radius,
|
676 |
+
hop_length,
|
677 |
+
f0_autotune,
|
678 |
+
inp_f0,
|
679 |
+
)
|
680 |
+
pitch = pitch[:p_len]
|
681 |
+
pitchf = pitchf[:p_len]
|
682 |
+
if self.device == "mps":
|
683 |
+
pitchf = pitchf.astype(np.float32)
|
684 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
685 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
686 |
+
for t in opt_ts:
|
687 |
+
t = t // self.window * self.window
|
688 |
+
if pitch_guidance == 1:
|
689 |
+
audio_opt.append(
|
690 |
+
self.voice_conversion(
|
691 |
+
model,
|
692 |
+
net_g,
|
693 |
+
sid,
|
694 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
695 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
696 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
697 |
+
index,
|
698 |
+
big_npy,
|
699 |
+
index_rate,
|
700 |
+
version,
|
701 |
+
protect,
|
702 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
703 |
+
)
|
704 |
+
else:
|
705 |
+
audio_opt.append(
|
706 |
+
self.voice_conversion(
|
707 |
+
model,
|
708 |
+
net_g,
|
709 |
+
sid,
|
710 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
711 |
+
None,
|
712 |
+
None,
|
713 |
+
index,
|
714 |
+
big_npy,
|
715 |
+
index_rate,
|
716 |
+
version,
|
717 |
+
protect,
|
718 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
719 |
+
)
|
720 |
+
s = t
|
721 |
+
if pitch_guidance == 1:
|
722 |
+
audio_opt.append(
|
723 |
+
self.voice_conversion(
|
724 |
+
model,
|
725 |
+
net_g,
|
726 |
+
sid,
|
727 |
+
audio_pad[t:],
|
728 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
729 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
730 |
+
index,
|
731 |
+
big_npy,
|
732 |
+
index_rate,
|
733 |
+
version,
|
734 |
+
protect,
|
735 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
736 |
+
)
|
737 |
+
else:
|
738 |
+
audio_opt.append(
|
739 |
+
self.voice_conversion(
|
740 |
+
model,
|
741 |
+
net_g,
|
742 |
+
sid,
|
743 |
+
audio_pad[t:],
|
744 |
+
None,
|
745 |
+
None,
|
746 |
+
index,
|
747 |
+
big_npy,
|
748 |
+
index_rate,
|
749 |
+
version,
|
750 |
+
protect,
|
751 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
752 |
+
)
|
753 |
+
audio_opt = np.concatenate(audio_opt)
|
754 |
+
if rms_mix_rate != 1:
|
755 |
+
audio_opt = AudioProcessor.change_rms(
|
756 |
+
audio, self.sample_rate, audio_opt, tgt_sr, rms_mix_rate
|
757 |
+
)
|
758 |
+
if resample_sr >= self.sample_rate and tgt_sr != resample_sr:
|
759 |
+
audio_opt = librosa.resample(
|
760 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
761 |
+
)
|
762 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
763 |
+
max_int16 = 32768
|
764 |
+
if audio_max > 1:
|
765 |
+
max_int16 /= audio_max
|
766 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
767 |
+
del pitch, pitchf, sid
|
768 |
+
if torch.cuda.is_available():
|
769 |
+
torch.cuda.empty_cache()
|
770 |
+
return audio_opt
|