File size: 16,666 Bytes
12bee07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# coding=utf-8
# Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/tokenization_bert.py


# ProkBERT tokenizer stuff

import collections
import os
import unicodedata
from typing import List, Optional, Tuple, Union
from copy import deepcopy
from transformers import PreTrainedTokenizer
from transformers.tokenization_utils import _is_control, _is_punctuation, _is_whitespace
from transformers.utils import logging

# These utils contains the tools needed by the ProkBERT tokenizer

from config_utils import *
from sequtils import *

import logging as logger

#logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}

# models prokbert-mini-k6s1, prokbert-large-k6s2, prokbert-large-k6s1


PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "prokbert-mini-k6s1": "prokbert-base-dna6/vocab.txt",
        "prokbert-large-k6s1": "prokbert-base-dna6/vocab.txt",
        "prokbert-large-k6s2": "prokbert-base-dna6/vocab.txt"
    }
}


PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "prokbert-mini-k6s1": 1024,
    "prokbert-large-k6s1": 1024,
    "prokbert-large-k6s2": 1024
}

PRETRAINED_INIT_CONFIGURATION = {
    "prokbert-mini-k6s1": {"do_upper_case": True},
    "prokbert-large-k6s1": {"do_upper_case": True},
    "prokbert-large-k6s2": {"do_upper_case": True}

}


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


class ProkBERTTokenizer(PreTrainedTokenizer):
    """Custom tokenizer for ProkBERT."""
    
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    nucleotide_abc = {'A', 'T', 'C', 'G'}
    extended_nucleotide_abc = {'A', 'T', 'C', 'G', '*'}
    sequence_unk_token = 'N'
    default_unk_token="[UNK]"
    default_sep_token="[SEP]"
    default_pad_token="[PAD]"
    default_cls_token="[CLS]"
    default_mask_token="[MASK]"


    def __init__(self, 
                 tokenization_params: Dict = {},
                 segmentation_params: Dict = {},
                 comp_params: Dict = {},
                 operation_space: str = 'sequence',
                 **kwargs):
        """Initialize the ProkBERT tokenizer.
        
        Args:
            tokenization_params (Dict, optional): Tokenization parameters. Defaults to {}.
            segmentation_params (Dict, optional): Segmentation parameters. Defaults to {}.
            comp_params (Dict, optional): Computational parameters. Defaults to {}.
            operation_space (str, optional): Specifies the operation mode. Can be 'kmer' or 'sequence'. Defaults to 'kmer'.
        """
        super().__init__(cls_token=ProkBERTTokenizer.default_cls_token,
                         **kwargs)
        
        self.defconfig = SeqConfig()
        self.tokenization_params = self.defconfig.get_and_set_tokenization_parameters(tokenization_params)
        self.segmentation_params = self.defconfig.get_and_set_segmentation_parameters(segmentation_params)
        self.comp_params = self.defconfig.get_and_set_computational_parameters(comp_params)
        self.operation_space = operation_space

        vocab_file = self.tokenization_params['vocabfile']
        self.vocab = self.tokenization_params['vocabmap']
        self.id2token = {v: k for k, v in self.vocab.items()}
        self.max_len = self.tokenization_params['max_segment_length']

        if self.operation_space == 'sequence':
            token_extension = sorted(list(set(generate_kmers(ProkBERTTokenizer.extended_nucleotide_abc, self.tokenization_params['kmer'])) - \
                 set(generate_kmers(ProkBERTTokenizer.nucleotide_abc, self.tokenization_params['kmer'])) ))
            self.extended_vocab = deepcopy(self.vocab)
            for token in token_extension:
                self.extended_vocab[token] = 4
                            
            self.unk_token = ProkBERTTokenizer.sequence_unk_token * self.tokenization_params['shift']
            self.mask_token = '*'
            self.extended_vocab[self.mask_token] = self.vocab['[MASK]']

            full_unk = 'N' * self.tokenization_params['kmer']
            self.vocab[full_unk] = 1
            self.id2token[1] = full_unk
            self.full_unk_token = full_unk

        else:
            self.extended_vocab = self.vocab 
            self.unk_token = '[UNK]'
        self.sep_token = '[SEP]'
        self.cls_token = '[CLS]'
        self.pad_token = '[PAD]'
        self.mask_token = '[MASK]'
        self.special_tokens = list(self.special_tokens_map.values())

    def __len__(self) -> int:
        return len(self.vocab)


    def tokenize(self, text: str, lca_shift: int = 0, all: bool = False) -> Union[List[str], Tuple[List[List[str]], List[List[str]]]]:
        """
        Tokenizes a given segment.

        Args:
            text (str): The DNA segment to tokenize.
            lca_shift (int, optional): Which tokenized vector belonging to the specified LCA offset should be returned. Defaults to 0.
            all (bool, optional): If True, returns all possible tokenizations. Defaults to False.
        
        Returns:
            Union[List[str], Tuple[List[List[str]], List[List[str]]]]: Tokenized segment or tuple of all possible tokenizations.
        
        Usage Example:
            >>> tokenizer = ProkBERTTokenizer(...)
            >>> segment = 'AATCAAGGAATTATTATCGTT'
            >>> tokens, kmers = tokenizer.tokenize(segment, all=True)
            >>> print(tokens)
            ...
        """
        tokenized_segments, kmerized_segments = lca_tokenize_segment(text, self.tokenization_params)
        if all:
            return tokenized_segments, kmerized_segments
        else:
            return kmerized_segments[lca_shift]

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)
            

    def depr_convert_ids_to_tokens(self, ids: Union[int, List[int]]) -> List[str]:
        """
        Converts tokens to their corresponding IDs.

        Args:
            tokens (List[str]): List of tokens to convert.
        
        Returns:
            List[int]: List of corresponding token IDs.
        
        Usage Example:
            >>> tokenizer = ProkBERTTokenizer(...)
            >>> tokens = ['AATCAA', 'TCAAGG']
            >>> ids = tokenizer.convert_tokens_to_ids(tokens)
            >>> print(ids)
            ...
        """

        if isinstance(ids, int):
            token_ids = self.vocab.get(ids, self.vocab[self.unk_token])


        if self.operation_space == 'sequence':
            token_ids = [self.vocab.get(token, self.vocab[self.full_unk_token]) for token in tokens]
        
        else:
            token_ids = [self.vocab.get(token, self.vocab[self.unk_token]) for token in tokens]
        
        return token_ids

    def convert_ids_to_tokens(self, ids: Union[int, List[int]]) -> Union[str, List[str]]:
        """
        Converts token IDs back to their original tokens.
        
        Args:
            ids (List[int]): List of token IDs to convert.
        
        Returns:
            List[str]: List of corresponding tokens.
        
        Usage Example:
            >>> tokenizer = ProkBERTTokenizer(...)
            >>> ids = [213, 3343]
            >>> tokens = tokenizer.convert_ids_to_tokens(ids)
            >>> print(tokens)
            ...
        """
        if isinstance(ids, int):
            ids = [ids]
        if len(ids) == 1: 
            #default_token_list = [self.id2token.get(ids[0], self.unk_token)]
            return self.id2token.get(ids[0], self.unk_token)

        if self.operation_space == 'kmer':
            token_list = [self.id2token.get(id, self.unk_token) for id in ids]

        elif self.operation_space == 'sequence':
            token_list = []
            # Handling the sentence start
            if ids[0] == 2:
                pass
            else:
                token_list.append(self.id2token.get(ids[0], self.unk_token))
            if len(ids) > 1:
                # if this is a kmer then we add accordingly. 
                true_start_token = self.id2token.get(ids[1], self.unk_token)


                token_list.append(true_start_token)
            print(token_list)
            if len(ids) >2:
                # Adding the other tokens until the end
                for token_id in ids[2:]:
                    mapped_token_id = self.id2token.get(token_id, self.unk_token)
                    if (mapped_token_id in self.special_tokens):
                        act_token_value = ''
                    else:
                        act_token_value = mapped_token_id[-1*self.tokenization_params['shift']:]
                        token_list.append(act_token_value)

        return token_list
    
    
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        """Saves the vocabulary to a file."""
        if filename_prefix is None:
            filename_prefix = ""
        vocab_file_path = os.path.join(save_directory, filename_prefix + "vocab.txt")
        with open(vocab_file_path, "w") as f:
            for token in self.vocab:
                f.write(token + "\\n")
        return (vocab_file_path,)

    @classmethod
    def from_pretrained(cls, vocab_file: str) -> 'ProkBERTTokenizer':
        """Loads a pre-trained tokenizer.
        
        Args:
            vocab_file (str): Path to the pre-trained tokenizer vocabulary file.
        
        Returns:
            ProkBERTTokenizer: Loaded tokenizer instance.
        """
        return cls(vocab_file)

    def encode_plus(self, text: str, lca_shift: int = 0, **kwargs) -> Dict[str, np.ndarray]:
        """
        Tokenizes a sequence and returns it in a format suitable for model input.
        
        Args:
            text (str): The sequence to tokenize.
            lca_shift (int, optional): LCA offset for tokenization. Defaults to 0.
        
        Returns:
            Dict[str, np.ndarray]: Dictionary containing token IDs and attention masks.
        
        Usage Example:
            >>> tokenizer = ProkBERTTokenizer(...)
            >>> segment = 'AATCAAGGAATTATTATCGTT'
            >>> encoded = tokenizer.encode_plus(segment)
            >>> print(encoded)
            ...
        """
        tokenized_segments, kmerized_segments = lca_tokenize_segment(text, self.tokenization_params)
        input_ids = tokenized_segments[lca_shift]
        attention_mask = [1] * len(input_ids)

        # Padding
        while len(input_ids) < self.max_len:
            input_ids.append(0)
            attention_mask.append(0)

        return {
            "input_ids": np.array(input_ids, dtype=self.comp_params['np_tokentype']),
            "attention_mask": np.array(attention_mask, dtype=self.comp_params['np_tokentype'])
        }
    
    def batch_encode_plus(self, sequences: List[str], lca_shift: int = 0, all: bool = False, **kwargs) -> Dict[str, List[List[int]]]:
        """
        Tokenizes multiple sequences and returns them in a format suitable for model input. It is assumed that sequences 
        have already been preprocessed (i.e., segmented) and quality controlled. 

        Args:
        - sequences (List[str]): A list of DNA sequences to be tokenized.
        - lca_shift (int, default=0): The LCA offset or windows to get the tokenized vector. If the required offset is >= shift, 
        an error is raised.
        - all (bool, default=False): Whether all possible tokenization vectors should be returned. If False, only the specified 
        offset is used. 
        - **kwargs: Additional arguments (like max_length, padding, etc.)

        Returns:
        - Dict[str, List[List[int]]]: A dictionary containing token IDs, attention masks, and token type IDs.
        """
        shift = self.tokenization_params['shift']
        if lca_shift >= shift:
            raise ValueError(f'The required offset {lca_shift} is invalid. The maximum offset should be < {shift}')
        
        # Parallel tokenization. First, create unique IDs for all sequences. 
        sequence_ids = list(range(len(sequences)))
        to_tokenize_data = (sequences, sequence_ids)
        
        # Tokenize each sequence
        tokenization_results = batch_tokenize_segments_with_ids(
            to_tokenize_data, 
            self.tokenization_params, 
            self.comp_params['cpu_cores_for_tokenization'],
            self.comp_params['batch_size_tokenization'],
            self.comp_params['np_tokentype']
        )

        # Generate input ids, token type ids, and attention masks
        input_ids = []
        token_type_ids = []
        attention_masks = []
        
        if all:
            for tokenized_vectors in tokenization_results.values():
                for tokenized_vector in tokenized_vectors:
                    input_ids.append(tokenized_vector)
                    token_type_ids.append([0] * len(tokenized_vector))
                    attention_masks.append([1] * len(tokenized_vector))
        else:
            for tokenized_vectors in tokenization_results.values():
                selected_vector = tokenized_vectors[lca_shift]
                input_ids.append(selected_vector)
                token_type_ids.append([0] * len(selected_vector))
                attention_masks.append([1] * len(selected_vector))

        return {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": attention_masks
        }
    
    def encode(self, segment: str,  lca_shift: int = 0, all: bool = False, add_special_tokens: bool = True, **kwargs) -> List[int]:
        """
        Encode a DNA sequence into its corresponding token IDs.
        
        Args:
            text (str): The DNA segment to encode.
            add_special_tokens (bool, optional): Whether to add special tokens like [CLS] and [SEP]. Defaults to True.
        
        Returns:
            List[int]: Encoded token IDs.
        
        Usage Example:
            >>> tokenizer = ProkBERTTokenizer(...)
            >>> segment = 'AATCAAGGAATTATTATCGTT'
            >>> ids = tokenizer.encode(segment)
            >>> print(ids)
            ...
        """
        shift = self.tokenization_params['shift']
        if lca_shift >= shift:
            raise ValueError(f'The required offset {lca_shift} is invalid. The maximum offset should be < {shift}')
        
        tokenized_segments, _ = lca_tokenize_segment(segment, self.tokenization_params)

        # if all is set to True, then we return all the possible ids as a list
        if all:
            token_ids = tokenized_segments
            if not add_special_tokens:
                new_token_ids = []
                for token_id_set in tokenized_segments:
                    new_token_ids.append(token_id_set[1:len(token_id_set)-1])
                token_ids = new_token_ids

        else:
            token_ids = tokenized_segments[lca_shift]
            # Convert tokens to their corresponding IDs
            # Add special tokens if needed
            if not add_special_tokens:
                token_ids = token_ids[1:len(token_ids)-1]

        return token_ids
    
    def decode(self, ids):
        tokens = self.convert_ids_to_tokens(ids)
        return ''.join(tokens)
    
    def batch_decode(self, token_ids_list: List[List[int]], **kwargs) -> List[str]:
        """
        Decodes multiple token ID sequences back into their original sequences.
        
        Args:
            token_ids_list (List[List[int]]): List of token ID sequences.
        
        Returns:
            List[str]: List of decoded sequences.
        
        Usage Example:
            >>> tokenizer = ProkBERTTokenizer(...)
            >>> ids = [[2, 213, 3343, 165, 2580, 248, 3905, 978, 3296, 3]]
            >>> sequences = tokenizer.batch_decode(ids)
            >>> print(sequences)
            ...
        """
        return [self.decode(token_ids) for token_ids in token_ids_list]