neuralhaven commited on
Commit
419b53b
1 Parent(s): 26fc3b0

Model save

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/deit-tiny-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: deit-tiny-patch16-224-RESISC45_01
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # deit-tiny-patch16-224-RESISC45_01
20
+
21
+ This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3266
24
+ - Accuracy: 0.912
25
+ - Precision: 0.9184
26
+ - Recall: 0.912
27
+ - F1: 0.9127
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 512
48
+ - eval_batch_size: 512
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 2.1588 | 1.0 | 37 | 1.4843 | 0.716 | 0.7429 | 0.716 | 0.7079 |
59
+ | 1.1043 | 2.0 | 74 | 0.8240 | 0.825 | 0.8391 | 0.825 | 0.8245 |
60
+ | 0.801 | 3.0 | 111 | 0.5870 | 0.866 | 0.8733 | 0.866 | 0.8660 |
61
+ | 0.6546 | 4.0 | 148 | 0.4760 | 0.885 | 0.8916 | 0.885 | 0.8852 |
62
+ | 0.5632 | 5.0 | 185 | 0.4202 | 0.896 | 0.9038 | 0.896 | 0.8963 |
63
+ | 0.5004 | 6.0 | 222 | 0.3792 | 0.895 | 0.9046 | 0.895 | 0.8953 |
64
+ | 0.4392 | 7.0 | 259 | 0.3483 | 0.906 | 0.9126 | 0.906 | 0.9067 |
65
+ | 0.4358 | 8.0 | 296 | 0.3436 | 0.907 | 0.9150 | 0.907 | 0.9084 |
66
+ | 0.4208 | 9.0 | 333 | 0.3298 | 0.908 | 0.9135 | 0.908 | 0.9086 |
67
+ | 0.4148 | 10.0 | 370 | 0.3266 | 0.912 | 0.9184 | 0.912 | 0.9127 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.44.0
73
+ - Pytorch 2.4.0
74
+ - Datasets 2.21.0
75
+ - Tokenizers 0.19.1