Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
---
|
6 |
+
|
7 |
+
# Meta-Llama-3-70B-Instruct-FP8-KV
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
Meta-Llama-3-70B-Instruct quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0.
|
11 |
+
This model checkpoint also includes per-tensor scales for FP8 quantized KV Cache, accessed through the `--kv-cache-dtype fp8` argument in vLLM.
|
12 |
+
|
13 |
+
```python
|
14 |
+
from vllm import LLM
|
15 |
+
model = LLM(model="neuralmagic/Meta-Llama-3-70B-Instruct-FP8-KV", kv_cache_dtype="fp8")
|
16 |
+
result = model.generate("Hello, my name is")
|
17 |
+
```
|
18 |
+
|
19 |
+
## Usage and Creation
|
20 |
+
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8).
|
21 |
+
|
22 |
+
```python
|
23 |
+
from datasets import load_dataset
|
24 |
+
from transformers import AutoTokenizer
|
25 |
+
|
26 |
+
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
27 |
+
|
28 |
+
pretrained_model_dir = "meta-llama/Meta-Llama-3-70B-Instruct"
|
29 |
+
quantized_model_dir = "Meta-Llama-3-70B-Instruct-FP8-KV"
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
32 |
+
tokenizer.pad_token = tokenizer.eos_token
|
33 |
+
|
34 |
+
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft")
|
35 |
+
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
36 |
+
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
37 |
+
|
38 |
+
quantize_config = BaseQuantizeConfig(
|
39 |
+
quant_method="fp8",
|
40 |
+
activation_scheme="static",
|
41 |
+
ignore_patterns=["re:.*lm_head"],
|
42 |
+
kv_cache_quant_targets=("k_proj", "v_proj"),
|
43 |
+
)
|
44 |
+
|
45 |
+
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
|
46 |
+
model.quantize(examples)
|
47 |
+
model.save_quantized(quantized_model_dir)
|
48 |
+
```
|
49 |
+
|
50 |
+
## Evaluation
|
51 |
+
|
52 |
+
### Open LLM Leaderboard evaluation scores
|
53 |
+
| | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-FP8 | Meta-Llama-3-70B-Instruct-FP8-KV<br>(this model) |
|
54 |
+
| :----------------------: | :-----------------------: | :---------------------------: | :----------------------------------------------: |
|
55 |
+
| arc-c<br>25-shot | 72.69 | 72.61 | 72.57 |
|
56 |
+
| hellaswag<br>10-shot | 85.50 | 85.41 | 85.32 |
|
57 |
+
| mmlu<br>5-shot | 80.18 | 80.06 | 79.69 |
|
58 |
+
| truthfulqa<br>0-shot | 62.90 | 62.73 | 61.92 |
|
59 |
+
| winogrande<br>5-shot | 83.34 | 83.03 | 83.66 |
|
60 |
+
| gsm8k<br>5-shot | 92.49 | 91.12 | 90.83 |
|
61 |
+
| **Average<br>Accuracy** | **79.51** | **79.16** | **79.00** |
|
62 |
+
| **Recovery** | **100%** | **99.55%** | **99.36%** |
|