---
tags:
- fp8
- vllm
---
# Meta-Llama-3-70B-Instruct-FP8-KV
## Model Overview
Meta-Llama-3-70B-Instruct quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0.
This model checkpoint also includes per-tensor scales for FP8 quantized KV Cache, accessed through the `--kv-cache-dtype fp8` argument in vLLM.
```python
from vllm import LLM
model = LLM(model="neuralmagic/Meta-Llama-3-70B-Instruct-FP8-KV", kv_cache_dtype="fp8")
result = model.generate("Hello, my name is")
```
## Usage and Creation
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8).
```python
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "meta-llama/Meta-Llama-3-70B-Instruct"
quantized_model_dir = "Meta-Llama-3-70B-Instruct-FP8-KV"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft")
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
quantize_config = BaseQuantizeConfig(
quant_method="fp8",
activation_scheme="static",
ignore_patterns=["re:.*lm_head"],
kv_cache_quant_targets=("k_proj", "v_proj"),
)
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
```
## Evaluation
### Open LLM Leaderboard evaluation scores
Model evaluation results obtained via [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
| Benchmark | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-FP8 | Meta-Llama-3-70B-Instruct-FP8-KV
(this model) |
| :-------------------------------------------------------: | :-----------------------: | :---------------------------: | :----------------------------------------------: |
| [ARC-c](https://arxiv.org/abs/1911.01547)
25-shot | 72.69 | 72.61 | 72.57 |
| [HellaSwag](https://arxiv.org/abs/1905.07830)
10-shot | 85.50 | 85.41 | 85.32 |
| [MMLU](https://arxiv.org/abs/2009.03300)
5-shot | 80.18 | 80.06 | 79.69 |
| [TruthfulQA](https://arxiv.org/abs/2109.07958)
0-shot | 62.90 | 62.73 | 61.92 |
| [WinoGrande](https://arxiv.org/abs/1907.10641)
5-shot | 83.34 | 83.03 | 83.66 |
| [GSM8K](https://arxiv.org/abs/2110.14168)
5-shot | 92.49 | 91.12 | 90.83 |
| **Average
Accuracy** | **79.51** | **79.16** | **79.00** |
| **Recovery** | **100%** | **99.55%** | **99.36%** |