Update README.md
Browse files
README.md
CHANGED
@@ -24,8 +24,8 @@ language:
|
|
24 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
-
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
28 |
-
|
29 |
|
30 |
### Model Optimizations
|
31 |
|
@@ -162,7 +162,8 @@ oneshot(
|
|
162 |
|
163 |
## Evaluation
|
164 |
|
165 |
-
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command
|
|
|
166 |
```
|
167 |
lm_eval \
|
168 |
--model vllm \
|
@@ -170,7 +171,6 @@ lm_eval \
|
|
170 |
--tasks openllm \
|
171 |
--batch_size auto
|
172 |
```
|
173 |
-
Certain benchmarks for the full precision model are still being acquired. Average recovery is calculated only with metrics that both models have been evaluated on.
|
174 |
|
175 |
### Accuracy
|
176 |
|
@@ -189,41 +189,41 @@ Certain benchmarks for the full precision model are still being acquired. Averag
|
|
189 |
<tr>
|
190 |
<td>MMLU (5-shot)
|
191 |
</td>
|
192 |
-
<td
|
193 |
</td>
|
194 |
<td>86.06
|
195 |
</td>
|
196 |
-
<td
|
197 |
</td>
|
198 |
</tr>
|
199 |
<tr>
|
200 |
-
<td>ARC Challenge (
|
201 |
</td>
|
202 |
-
<td
|
203 |
</td>
|
204 |
-
<td
|
205 |
</td>
|
206 |
-
<td
|
207 |
</td>
|
208 |
</tr>
|
209 |
<tr>
|
210 |
-
<td>GSM-8K (
|
211 |
</td>
|
212 |
-
<td>
|
213 |
</td>
|
214 |
-
<td>
|
215 |
</td>
|
216 |
-
<td>99.
|
217 |
</td>
|
218 |
</tr>
|
219 |
<tr>
|
220 |
<td>Hellaswag (10-shot)
|
221 |
</td>
|
222 |
-
<td
|
223 |
</td>
|
224 |
<td>88.25
|
225 |
</td>
|
226 |
-
<td
|
227 |
</td>
|
228 |
</tr>
|
229 |
<tr>
|
@@ -249,11 +249,11 @@ Certain benchmarks for the full precision model are still being acquired. Averag
|
|
249 |
<tr>
|
250 |
<td><strong>Average</strong>
|
251 |
</td>
|
252 |
-
<td><strong
|
253 |
</td>
|
254 |
-
<td><strong
|
255 |
</td>
|
256 |
-
<td><strong>99.
|
257 |
</td>
|
258 |
</tr>
|
259 |
</table>
|
|
|
24 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
+
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
28 |
+
It achieves an average score of 86.41 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.63.
|
29 |
|
30 |
### Model Optimizations
|
31 |
|
|
|
162 |
|
163 |
## Evaluation
|
164 |
|
165 |
+
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command.
|
166 |
+
A modified version of ARC-C and GSM8k-cot was used for evaluations, in line with Llama 3.1's prompting. It can be accessed on the [Neural Magic fork of the lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct).
|
167 |
```
|
168 |
lm_eval \
|
169 |
--model vllm \
|
|
|
171 |
--tasks openllm \
|
172 |
--batch_size auto
|
173 |
```
|
|
|
174 |
|
175 |
### Accuracy
|
176 |
|
|
|
189 |
<tr>
|
190 |
<td>MMLU (5-shot)
|
191 |
</td>
|
192 |
+
<td>86.25
|
193 |
</td>
|
194 |
<td>86.06
|
195 |
</td>
|
196 |
+
<td>99.78%
|
197 |
</td>
|
198 |
</tr>
|
199 |
<tr>
|
200 |
+
<td>ARC Challenge (0-shot)
|
201 |
</td>
|
202 |
+
<td>96.93
|
203 |
</td>
|
204 |
+
<td>96.33
|
205 |
</td>
|
206 |
+
<td>99.38%
|
207 |
</td>
|
208 |
</tr>
|
209 |
<tr>
|
210 |
+
<td>GSM-8K-cot (8-shot, strict-match)
|
211 |
</td>
|
212 |
+
<td>96.44
|
213 |
</td>
|
214 |
+
<td>95.91
|
215 |
</td>
|
216 |
+
<td>99.45%
|
217 |
</td>
|
218 |
</tr>
|
219 |
<tr>
|
220 |
<td>Hellaswag (10-shot)
|
221 |
</td>
|
222 |
+
<td>88.33
|
223 |
</td>
|
224 |
<td>88.25
|
225 |
</td>
|
226 |
+
<td>99.91%
|
227 |
</td>
|
228 |
</tr>
|
229 |
<tr>
|
|
|
249 |
<tr>
|
250 |
<td><strong>Average</strong>
|
251 |
</td>
|
252 |
+
<td><strong>86.63</strong>
|
253 |
</td>
|
254 |
+
<td><strong>86.41</strong>
|
255 |
</td>
|
256 |
+
<td><strong>99.74%</strong>
|
257 |
</td>
|
258 |
</tr>
|
259 |
</table>
|