alexmarques commited on
Commit
fa37030
1 Parent(s): 25b9a14

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +262 -0
README.md ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
+ license: llama3.1
6
+ ---
7
+
8
+ # Meta-Llama-3.1-8B-Instruct-quantized.w8a8
9
+
10
+ ## Model Overview
11
+ - **Model Architecture:** Meta-Llama-3
12
+ - **Input:** Text
13
+ - **Output:** Text
14
+ - **Model Optimizations:**
15
+ - **Activation quantization:** INT8
16
+ - **Weight quantization:** INT8
17
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
18
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
19
+ - **Release Date:** 7/11/2024
20
+ - **Version:** 1.0
21
+ - **License(s):** [Llama3](https://llama.meta.com/llama3/license/)
22
+ - **Model Developers:** Neural Magic
23
+
24
+ Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
25
+ It achieves an average score of 69.27 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.33.
26
+
27
+ ### Model Optimizations
28
+
29
+ This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT8 data type.
30
+ This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
31
+ Weight quantization also reduces disk size requirements by approximately 50%.
32
+
33
+ Only weights and activations of the linear operators within transformers blocks are quantized.
34
+ Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
35
+ Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
36
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
37
+ GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens.
38
+
39
+
40
+ ## Deployment
41
+
42
+ ### Use with vLLM
43
+
44
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
45
+
46
+ ```python
47
+ from vllm import LLM, SamplingParams
48
+ from transformers import AutoTokenizer
49
+
50
+ model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8"
51
+ number_gpus = 1
52
+
53
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
56
+
57
+ messages = [
58
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
59
+ {"role": "user", "content": "Who are you?"},
60
+ ]
61
+
62
+ prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
63
+
64
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
65
+
66
+ outputs = llm.generate(prompts, sampling_params)
67
+
68
+ generated_text = outputs[0].outputs[0].text
69
+ print(generated_text)
70
+ ```
71
+
72
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
73
+
74
+ ### Use with transformers
75
+
76
+ The following example contemplates how the model can be deployed in Transformers using the `generate()` function.
77
+
78
+
79
+ ```python
80
+ from transformers import AutoTokenizer, AutoModelForCausalLM
81
+
82
+ model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8"
83
+
84
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
85
+ model = AutoModelForCausalLM.from_pretrained(
86
+ model_id,
87
+ torch_dtype="auto",
88
+ device_map="auto",
89
+ )
90
+
91
+ messages = [
92
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
93
+ {"role": "user", "content": "Who are you?"},
94
+ ]
95
+
96
+ input_ids = tokenizer.apply_chat_template(
97
+ messages,
98
+ add_generation_prompt=True,
99
+ return_tensors="pt"
100
+ ).to(model.device)
101
+
102
+ terminators = [
103
+ tokenizer.eos_token_id,
104
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
105
+ ]
106
+
107
+ outputs = model.generate(
108
+ input_ids,
109
+ max_new_tokens=256,
110
+ eos_token_id=terminators,
111
+ do_sample=True,
112
+ temperature=0.6,
113
+ top_p=0.9,
114
+ )
115
+ response = outputs[0][input_ids.shape[-1]:]
116
+ print(tokenizer.decode(response, skip_special_tokens=True))
117
+ ```
118
+
119
+ ## Creation
120
+
121
+ This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
122
+
123
+ ```python
124
+ from transformers import AutoTokenizer
125
+ from datasets import Dataset
126
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
127
+ from llmcompressor.modifiers.quantization import GPTQModifier
128
+ import random
129
+
130
+ model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
131
+
132
+ num_samples = 256
133
+ max_seq_len = 8192
134
+
135
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
136
+
137
+ max_token_id = len(tokenizer.get_vocab()) - 1
138
+ input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)]
139
+ attention_mask = num_samples * [max_seq_len * [1]]
140
+ ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask})
141
+
142
+ recipe = GPTQModifier(
143
+ targets="Linear",
144
+ scheme="W8A8",
145
+ ignore=["lm_head"],
146
+ dampening_frac=0.01,
147
+ )
148
+
149
+ model = SparseAutoModelForCausalLM.from_pretrained(
150
+ model_id,
151
+ device_map="auto",
152
+ trust_remote_code=True,
153
+ )
154
+
155
+ oneshot(
156
+ model=model,
157
+ dataset=ds,
158
+ recipe=recipe,
159
+ max_seq_length=max_seq_len,
160
+ num_calibration_samples=num_samples,
161
+ )
162
+
163
+ model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w8a8")
164
+ ```
165
+
166
+
167
+ ## Evaluation
168
+
169
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
170
+ ```
171
+ lm_eval \
172
+ --model vllm \
173
+ --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
174
+ --tasks openllm \
175
+ --batch_size auto
176
+ ```
177
+
178
+ ### Accuracy
179
+
180
+ #### Open LLM Leaderboard evaluation scores
181
+ <table>
182
+ <tr>
183
+ <td><strong>Benchmark</strong>
184
+ </td>
185
+ <td><strong>Meta-Llama-3.1-8B-Instruct </strong>
186
+ </td>
187
+ <td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w8a8 (this model)</strong>
188
+ </td>
189
+ <td><strong>Recovery</strong>
190
+ </td>
191
+ </tr>
192
+ <tr>
193
+ <td>MMLU (5-shot)
194
+ </td>
195
+ <td>67.94
196
+ </td>
197
+ <td>67.58
198
+ </td>
199
+ <td>99.4%
200
+ </td>
201
+ </tr>
202
+ <tr>
203
+ <td>ARC Challenge (25-shot)
204
+ </td>
205
+ <td>62.63
206
+ </td>
207
+ <td>62.20
208
+ </td>
209
+ <td>99.5%
210
+ </td>
211
+ </tr>
212
+ <tr>
213
+ <td>GSM-8K (5-shot, strict-match)
214
+ </td>
215
+ <td>75.66
216
+ </td>
217
+ <td>76.57
218
+ </td>
219
+ <td>101.2%
220
+ </td>
221
+ </tr>
222
+ <tr>
223
+ <td>Hellaswag (10-shot)
224
+ </td>
225
+ <td>80.01
226
+ </td>
227
+ <td>79.85
228
+ </td>
229
+ <td>99.8%
230
+ </td>
231
+ </tr>
232
+ <tr>
233
+ <td>Winogrande (5-shot)
234
+ </td>
235
+ <td>77.90
236
+ </td>
237
+ <td>77.11
238
+ </td>
239
+ <td>99.0%
240
+ </td>
241
+ </tr>
242
+ <tr>
243
+ <td>TruthfulQA (0-shot)
244
+ </td>
245
+ <td>54.04
246
+ </td>
247
+ <td>54.19
248
+ </td>
249
+ <td>100.3%
250
+ </td>
251
+ </tr>
252
+ <tr>
253
+ <td><strong>Average</strong>
254
+ </td>
255
+ <td><strong>69.33</strong>
256
+ </td>
257
+ <td><strong>69.27</strong>
258
+ </td>
259
+ <td><strong>99.9%</strong>
260
+ </td>
261
+ </tr>
262
+ </table>