File size: 11,697 Bytes
185a29e 32379d5 185a29e 5daf216 32379d5 09cfe83 32379d5 5daf216 185a29e d69cf88 185a29e 32379d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
---
tags:
- fp8
- vllm
---
# Mixtral-8x7B-Instruct-v0.1-FP8
## Model Overview
Mixtral-8x7B-Instruct-v0.1 quantized to FP8 weights and activations, ready for inference with vLLM >= 0.5.0.
## Usage and Creation
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
Quantized using the script below:
Command:
```bash
python quantize.py --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --save-dir Mixtral-8x7B-Instruct-v0.1-FP8 --num-samples 512
```
Script:
```python
import argparse
import gc
import re
from typing import Tuple
import torch
import torch.functional as F
import transformers
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
# HACK: override the dtype_byte_size function in transformers to support float8 types
# Fix is posted upstream https://github.com/huggingface/transformers/pull/30488
def new_dtype_byte_size(dtype):
if dtype == torch.bool:
return 1 / 8
bit_search = re.search(r"[^\d](\d+)_?", str(dtype))
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
transformers.modeling_utils.dtype_byte_size = new_dtype_byte_size
def cleanup_memory():
gc.collect()
torch.cuda.empty_cache()
def per_tensor_quantize(tensor: torch.Tensor) -> Tuple[torch.Tensor, float]:
"""Quantize a tensor using per-tensor static scaling factor.
Args:
tensor: The input tensor.
"""
finfo = torch.finfo(torch.float8_e4m3fn)
# Calculate the scale as dtype max divided by absmax.
# Since .abs() creates a new tensor, we use aminmax to get
# the min and max first and then calculate the absmax.
if tensor.numel() == 0:
# Deal with empty tensors (triggered by empty MoE experts)
min_val, max_val = (
torch.tensor(0.0, dtype=tensor.dtype),
torch.tensor(1.0, dtype=tensor.dtype),
)
else:
min_val, max_val = tensor.aminmax()
amax = min_val.abs().max(max_val.abs())
scale = finfo.max / amax.clamp(min=1e-12)
# scale and clamp the tensor to bring it to
# the representative range of float8 data type
# (as default cast is unsaturated)
qweight = (tensor * scale).clamp(min=finfo.min, max=finfo.max)
# Return both float8 data and the inverse scale (as float),
# as both required as inputs to torch._scaled_mm
qweight = qweight.to(torch.float8_e4m3fn)
scale = scale.float().reciprocal()
return qweight, scale
def fp8_gemm(A, A_scale, B, B_scale, bias, out_dtype):
cuda_compute_capability = torch.cuda.get_device_capability()
if cuda_compute_capability >= (9, 0):
output, _ = torch._scaled_mm(
A,
B.t(),
out_dtype=out_dtype,
scale_a=A_scale,
scale_b=B_scale,
bias=bias,
)
else:
output = torch.nn.functional.linear(
A.to(out_dtype) * A_scale,
B.to(out_dtype) * B_scale.to(out_dtype),
bias=bias,
)
return output
class FP8StaticLinearQuantizer(torch.nn.Module):
def __init__(self, qweight, weight_scale):
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
self.act_scale = None
def forward(self, x):
# Dynamically quantize
qinput, x_act_scale = per_tensor_quantize(x)
# Update scale if needed.
if self.act_scale is None:
self.act_scale = torch.nn.Parameter(x_act_scale)
elif x_act_scale > self.act_scale:
self.act_scale = torch.nn.Parameter(x_act_scale)
# Pass quantized to next layer so it has realistic data.
output = fp8_gemm(
A=qinput,
A_scale=self.act_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=None,
out_dtype=x.dtype,
)
return output
class FP8StaticLinear(torch.nn.Module):
def __init__(self, qweight, weight_scale, act_scale=0.0):
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
self.act_scale = torch.nn.Parameter(act_scale, requires_grad=False)
def per_tensor_quantize(
self, tensor: torch.Tensor, inv_scale: float
) -> torch.Tensor:
# Scale and clamp the tensor to bring it to
# the representative range of float8 data type
# (as default cast is unsaturated)
finfo = torch.finfo(torch.float8_e4m3fn)
qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max)
return qweight.to(torch.float8_e4m3fn)
def forward(self, x):
qinput = self.per_tensor_quantize(x, inv_scale=self.act_scale)
output = fp8_gemm(
A=qinput,
A_scale=self.act_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=None,
out_dtype=x.dtype,
)
return output
class FP8DynamicLinear(torch.nn.Module):
def __init__(self, qweight, scale):
super().__init__()
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
self.weight_scale = torch.nn.Parameter(scale, requires_grad=False)
def forward(self, x):
qinput, x_scale = per_tensor_quantize(x)
output = fp8_gemm(
A=qinput,
A_scale=x_scale,
B=self.weight,
B_scale=self.weight_scale,
bias=None,
out_dtype=x.dtype,
)
return output
def replace_module(model, name, new_module):
if "." in name:
parent_name = name.rsplit(".", 1)[0]
child_name = name[len(parent_name) + 1 :]
parent = model.model.get_submodule(parent_name)
else:
parent_name = ""
parent = model.model
child_name = name
setattr(parent, child_name, new_module)
def quantize_weights(model):
for name, linear in model.model.named_modules():
if "gate" in name or not isinstance(linear, torch.nn.Linear):
continue
quant_weight, quant_scale = per_tensor_quantize(linear.weight)
quant_linear = FP8DynamicLinear(quant_weight, quant_scale)
replace_module(model, name, quant_linear)
del linear
cleanup_memory()
def quantize_activations(model, calibration_tokens):
# Replace layers with quantizer.
for name, dynamic_quant_linear in model.model.named_modules():
if "gate" in name or not isinstance(dynamic_quant_linear, FP8DynamicLinear):
continue
quantizer = FP8StaticLinearQuantizer(
dynamic_quant_linear.weight, dynamic_quant_linear.weight_scale
)
replace_module(model, name, quantizer)
del dynamic_quant_linear
cleanup_memory()
# Calibration.
for row_idx in range(calibration_tokens.shape[0]):
_ = model(calibration_tokens[row_idx].reshape(1, -1))
# Replace quantizer with StaticLayer.
for name, quantizer in model.model.named_modules():
if "gate" in name or not isinstance(quantizer, FP8StaticLinearQuantizer):
continue
static_proj = FP8StaticLinear(
quantizer.weight, quantizer.weight_scale, quantizer.act_scale
)
replace_module(model, name, static_proj)
del quantizer
cleanup_memory()
def save_quantized_model(model, activation_scheme, save_dir):
print(f"Saving the model to {save_dir}")
static_q_dict = {
"quantization_config": {
"quant_method": "fp8",
"activation_scheme": activation_scheme,
}
}
model.config.update(static_q_dict)
model.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-id", type=str)
parser.add_argument("--save-dir", type=str)
parser.add_argument(
"--activation-scheme", type=str, default="static", choices=["static", "dynamic"]
)
parser.add_argument("--num-samples", type=int, default=512)
parser.add_argument("--max-seq-len", type=int, default=512)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
sample_input_tokens = tokenizer.apply_chat_template(
[{"role": "user", "content": "What is your name?"}],
add_generation_prompt=True,
return_tensors="pt",
).to("cuda")
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
ds = ds.shuffle(seed=42).select(range(args.num_samples))
ds = ds.map(
lambda batch: {
"text": tokenizer.apply_chat_template(batch["messages"], tokenize=False)
}
)
tokenizer.pad_token_id = tokenizer.eos_token_id
calibration_tokens = tokenizer(
ds["text"],
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=args.max_seq_len,
add_special_tokens=False,
).input_ids.to("cuda")
print("Calibration tokens:", calibration_tokens.shape)
# Load and test the model
model = AutoModelForCausalLM.from_pretrained(
args.model_id, torch_dtype="auto", device_map="auto"
)
print(model)
output = model.generate(input_ids=sample_input_tokens, max_new_tokens=20)
print("ORIGINAL:\n", tokenizer.decode(output[0]), "\n\n")
# Quantize weights.
quantize_weights(model)
print(model)
output = model.generate(input_ids=sample_input_tokens, max_new_tokens=20)
print("WEIGHT QUANT:\n", tokenizer.decode(output[0]), "\n\n")
if args.activation_scheme in "dynamic":
print("Exporting model with static weights and dynamic activations")
save_quantized_model(model, args.activation_scheme, args.save_dir)
else:
assert args.activation_scheme in "static"
# Quantize activations.
quantize_activations(model, calibration_tokens=calibration_tokens)
output = model.generate(input_ids=sample_input_tokens, max_new_tokens=20)
print("ACT QUANT:\n", tokenizer.decode(output[0]), "\n\n")
print("Exporting model with static weights and static activations")
save_quantized_model(model, args.activation_scheme, args.save_dir)
```
## Evaluation
### Open LLM Leaderboard evaluation scores
| | Mixtral-8x7B-Instruct-v0.1 | Mixtral-8x7B-Instruct-v0.1-FP8<br>(this model) |
| :------------------: | :----------------------: | :------------------------------------------------: |
| arc-c<br>25-shot | 71.50 | 70.05 |
| hellaswag<br>10-shot | 87.53 | 86.30 |
| mmlu<br>5-shot | 70.33 | 68.81 |
| truthfulqa<br>0-shot | 64.79 | 63.69 |
| winogrande<br>5-shot | 82.40 | 81.69 |
| gsm8k<br>5-shot | 64.36 | 59.82 |
| **Average<br>Accuracy** | **73.48** | **71.72** |
| **Recovery** | **100%** | **97.60%** |
|