--- tags: - fp8 - vllm --- # Phi-3-mini-128k-instruct-FP8 ## Model Overview *

Model Architecture:

Based on and identical to the Phi-3-mini-128k-instruct-FP8 architecture *

Model Optimizations:

Weights and activations quantized to FP8 *

Release Date:

June 29, 2024 *

Model Developers:

Neural Magic Phi-3-mini-128k-instruct-FP8 quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0. Calibrated with 10 repeats of each token in the tokenizer in random order to achieve 99% performance recovery on the Open LLM Benchmark evaluations. Reduces space on disk by ~50%. Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127). ## Usage and Creation Produced using AutoFP8 with random tokens as calibration, based on [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py). ```python from datasets import load_dataset from transformers import AutoTokenizer import numpy as np import torch from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig MODEL_DIR = "microsoft/Phi-3-mini-128k-instruct" final_model_dir = MODEL_DIR.split("/")[-1] CONTEXT_LENGTH = 4096 NUM_SAMPLES = 512 NUM_REPEATS = 10 pretrained_model_dir = MODEL_DIR tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH) tokenizer.pad_token = tokenizer.eos_token tokenizer_num_tokens = len(list(tokenizer.get_vocab().values())) total_token_samples = NUM_REPEATS * tokenizer_num_tokens num_random_samp = -(-total_token_samples // CONTEXT_LENGTH) input_ids = np.tile(np.arange(tokenizer_num_tokens), NUM_REPEATS + 1)[:num_random_samp * CONTEXT_LENGTH] np.random.shuffle(input_ids) input_ids = input_ids.reshape(num_random_samp, CONTEXT_LENGTH) input_ids = torch.tensor(input_ids, dtype=torch.int64).to("cuda") quantize_config = BaseQuantizeConfig( quant_method="fp8", activation_scheme="static", ) examples = input_ids model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config) model.quantize(examples) quantized_model_dir = f"{final_model_dir}-FP8" model.save_quantized(quantized_model_dir) ``` Evaluated through a modified version of vLLM with the following script: ``` #!/bin/bash # Example usage: # CUDA_VISIBLE_DEVICES=0 ./eval_openllm.sh "neuralmagic/Llama-2-7b-chat-hf-FP8" "tensor_parallel_size=1,max_model_len=4096,add_bos_token=True,gpu_memory_utilization=0.7" export MODEL_DIR=${1} export MODEL_ARGS=${2} declare -A tasks_fewshot=( ["arc_challenge"]=25 ["winogrande"]=5 ["truthfulqa_mc2"]=0 ["hellaswag"]=10 ["mmlu"]=5 ["gsm8k"]=5 ) declare -A batch_sizes=( ["arc_challenge"]="auto" ["winogrande"]="auto" ["truthfulqa_mc2"]="auto" ["hellaswag"]="auto" ["mmlu"]=1 ["gsm8k"]="auto" ) for TASK in "${!tasks_fewshot[@]}"; do NUM_FEWSHOT=${tasks_fewshot[$TASK]} BATCH_SIZE=${batch_sizes[$TASK]} lm_eval --model vllm \ --model_args pretrained=$MODEL_DIR,$MODEL_ARGS \ --tasks ${TASK} \ --num_fewshot ${NUM_FEWSHOT} \ --write_out \ --show_config \ --device cuda \ --batch_size ${BATCH_SIZE} \ --output_path="results/${TASK}" done ``` In vllm=0.5.0, Phi-3 models are not fully supported, and running the above script will yield an AssertionError. However, replacing the file that throws an error with the file below will fix the issue. ``` from abc import abstractmethod from typing import Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch.nn.parameter import Parameter from vllm.distributed import (divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, split_tensor_along_last_dim, tensor_model_parallel_all_gather, tensor_model_parallel_all_reduce) from vllm.logger import init_logger from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig, QuantizeMethodBase) from vllm.model_executor.utils import set_weight_attrs logger = init_logger(__name__) def adjust_marlin_shard(param, shard_size, shard_offset): marlin_tile_size = getattr(param, "marlin_tile_size", None) if marlin_tile_size is None: return shard_size, shard_offset return shard_size * marlin_tile_size, shard_offset * marlin_tile_size def adjust_bitsandbytes_shard(param: Parameter, qkv_offsets: Dict[str, Tuple[int, int]], loaded_shard_id: str) -> Tuple[int, int]: """Adjust the quantization offsets and sizes for BitsAndBytes sharding.""" total, _ = qkv_offsets["total"] orig_offset, orig_size = qkv_offsets[loaded_shard_id] quantized_total = param.data.shape[0] quantized_offset = orig_offset * quantized_total // total quantized_size = orig_size * quantized_total // total return quantized_size, quantized_offset class LinearMethodBase(QuantizeMethodBase): """Base class for different (maybe quantized) linear methods.""" @abstractmethod def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): """Create weights for a linear layer. The weights will be set as attributes of the layer. Args: layer: The layer that is using the LinearMethodBase factory. input_size_per_partition: Size of the weight input dim on rank X. output_partition_sizes: Sizes of the output dim of each logical weight on rank X. E.g., output_partition_sizes for QKVLinear is a list contains the width of Wq, Wk, Wv on rank X. input_size: Size of the input dim of the weight across all ranks. output_size: Size of the output dim of the weight across all ranks. params_dtype: Datatype of the parameters. """ raise NotImplementedError @abstractmethod def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply the weights in layer to the input tensor. Expects create_weights to have been called before on the layer.""" raise NotImplementedError class UnquantizedLinearMethod(LinearMethodBase): """Linear method without quantization. Args: separate_bias_add: If true, add bias separately after matrix multiplication. """ def __init__(self, separate_bias_add: bool = False): self.separate_bias_add = separate_bias_add def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): weight = Parameter(torch.empty(sum(output_partition_sizes), input_size_per_partition, dtype=params_dtype), requires_grad=False) set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0}) layer.register_parameter("weight", weight) set_weight_attrs(weight, extra_weight_attrs) def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: weight = layer.weight if self.separate_bias_add: if bias is not None: return F.linear(x, weight) + bias return F.linear(x, weight) return F.linear(x, weight, bias) class LinearBase(torch.nn.Module): """Base linear layer. Args: input_size: input dimension of the linear layer. output_size: output dimension of the linear layer. bias: If true, add bias. skip_bias_add: If true, skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. """ def __init__( self, input_size: int, output_size: int, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.skip_bias_add = skip_bias_add if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype if quant_config is None: self.quant_method: Optional[ QuantizeMethodBase] = UnquantizedLinearMethod() else: self.quant_method = quant_config.get_quant_method(self) def forward(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError class ReplicatedLinear(LinearBase): """Replicated linear layer. Args: input_size: input dimension of the linear layer. output_size: output dimension of the linear layer. bias: If true, add bias. skip_bias_add: If true, skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. """ def __init__(self, input_size: int, output_size: int, bias: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None): super().__init__(input_size, output_size, skip_bias_add, params_dtype, quant_config) # All the linear layer supports quant method. assert self.quant_method is not None self.quant_method.create_weights(self, self.input_size, [self.output_size], self.input_size, self.output_size, self.params_dtype) if bias: self.bias = Parameter( torch.empty(self.output_size, dtype=self.params_dtype)) set_weight_attrs(self.bias, {"output_dim": 0}) else: self.register_parameter("bias", None) def forward(self, x: torch.Tensor) -> torch.Tensor: bias = self.bias if not self.skip_bias_add else None assert self.quant_method is not None output = self.quant_method.apply(self, x, bias) output_bias = self.bias if self.skip_bias_add else None return output, output_bias def extra_repr(self) -> str: s = f"in_features={self.input_size}" s += f", output_features={self.output_size}" s += f", bias={self.bias is not None}" return s class ColumnParallelLinear(LinearBase): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Args: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. gather_output: If true, call all-gather on output and make Y available to all GPUs, otherwise, every GPU will have its output which is Y_i = XA_i skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. output_sizes: list of output sizes packed into one output, like for QKV the list would be size 3. """ def __init__(self, input_size: int, output_size: int, bias: bool = True, gather_output: bool = False, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, output_sizes: Optional[List[int]] = None): super().__init__(input_size, output_size, skip_bias_add, params_dtype, quant_config) self.gather_output = gather_output # Divide the weight matrix along the last dimension. tp_size = get_tensor_model_parallel_world_size() assert self.quant_method is not None self.output_size_per_partition = divide(self.output_size, tp_size) self.output_partition_sizes = [self.output_size_per_partition] # If QKV or MergedColumn, use output size of each partition. if hasattr(self, "output_sizes"): self.output_partition_sizes = [ divide(output_size, tp_size) for output_size in self.output_sizes ] if output_sizes is None: output_sizes = [output_size] self.quant_method.create_weights( layer=self, input_size_per_partition=self.input_size, output_partition_sizes=self.output_partition_sizes, input_size=self.input_size, output_size=self.output_size, params_dtype=self.params_dtype, weight_loader=self.weight_loader) if bias: self.bias = Parameter( torch.empty(self.output_size_per_partition, dtype=params_dtype)) set_weight_attrs(self.bias, { "output_dim": 0, "weight_loader": self.weight_loader, }) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): # Special case for Fp8 scales. fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer", None) tp_rank = get_tensor_model_parallel_rank() output_dim = getattr(param, "output_dim", None) param_data = param.data if output_dim is not None: shard_size = param_data.shape[output_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) # Special case for Fp8 scales. elif fp8_scales_shard_indexer is not None: param_data, loaded_weight = fp8_scales_shard_indexer(param_data, loaded_weight, shard_id=0) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def forward(self, input_): bias = self.bias if not self.skip_bias_add else None # Matrix multiply. assert self.quant_method is not None output_parallel = self.quant_method.apply(self, input_, bias) if self.gather_output: # All-gather across the partitions. output = tensor_model_parallel_all_gather(output_parallel) else: output = output_parallel output_bias = self.bias if self.skip_bias_add else None return output, output_bias def extra_repr(self) -> str: s = f"in_features={self.input_size}" s += f", output_features={self.output_size_per_partition}" s += f", bias={self.bias is not None}" s += f", tp_size={get_tensor_model_parallel_world_size()}" s += f", gather_output={self.gather_output}" return s class MergedColumnParallelLinear(ColumnParallelLinear): """Packed linear layers with column parallelism. Similar to ColumnParallelLinear, but the weight matrix is concatenated along the output dimension. When the weight matrix is loaded, the different partitions are sharded separately. Args: input_size: input dimension of the linear layer. output_sizes: list of output dimensions of the linear layer. bias: If true, add bias. gather_output: If true, call all-gather on output and make the output available to all GPUs, otherwise, every GPU will have its own output. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. """ def __init__(self, input_size: int, output_sizes: List[int], bias: bool = True, gather_output: bool = False, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None): self.output_sizes = output_sizes tp_size = get_tensor_model_parallel_world_size() assert all(output_size % tp_size == 0 for output_size in output_sizes) super().__init__(input_size=input_size, output_size=sum(output_sizes), bias=bias, gather_output=gather_output, skip_bias_add=skip_bias_add, params_dtype=params_dtype, quant_config=quant_config) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[int] = None): param_data = param.data output_dim = getattr(param, "output_dim", None) # Special case for AQLM codebooks. is_metadata = getattr(param, "is_metadata", False) param_shard_splitter = getattr(param, "shard_splitter", None) if output_dim is not None and param_shard_splitter is not None: raise NotImplementedError( "We do not currently support output_dim != None and " "shard_splitter != None for a parameter. Please open an issue." ) # If a parameter has defined a shard_splitter to be used for # the weight, it should be applied before the weight is # loaded/copied to the parameter. The shard_splitter applies # logic by using the loaded_shard_id to ensure that the loaded # param is loaded to the correct location # within the parameter defined by the linear method. if loaded_shard_id is None and param_shard_splitter is not None: raise NotImplementedError( "We do not currently support loaded_shard_id == None and " "shard_splitter != None for a parameter. Please open an issue." ) # Special case for Fp8 scales. fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer", None) if loaded_shard_id is None: # Loaded weight is already packed. if output_dim is None: temp = loaded_weight.repeat(param_data.shape) assert param_data.shape == temp.shape param_data.copy_(temp) return current_shard_offset = 0 shard_offsets = [] for i, output_size in enumerate(self.output_sizes): shard_offsets.append((i, current_shard_offset, output_size)) current_shard_offset += output_size packed_dim = getattr(param, "packed_dim", None) for shard_id, shard_offset, shard_size in shard_offsets: # Special case for Quantization. # If quantized, we need to adjust the offset and size to account # for the packing. if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) loaded_weight_shard = loaded_weight.narrow( output_dim, shard_offset, shard_size) self.weight_loader(param, loaded_weight_shard, shard_id) return assert loaded_shard_id < len(self.output_sizes) tp_rank = get_tensor_model_parallel_rank() tp_size = get_tensor_model_parallel_world_size() if output_dim is not None: shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size shard_size = self.output_sizes[loaded_shard_id] // tp_size # Special case for quantization. # If quantized, we need to adjust the offset and size to account # for the packing. packed_dim = getattr(param, "packed_dim", None) if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) use_bitsandbytes = getattr(param, "use_bitsandbytes", False) if use_bitsandbytes: shard_size = loaded_weight.shape[output_dim] shard_offset = loaded_weight.shape[output_dim] * \ loaded_shard_id param_data = param_data.narrow(output_dim, shard_offset, shard_size) start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) # Special case for AQLM codebooks. elif is_metadata: # metadata indicates fixed size concatenated along dim 0 shard_size = loaded_weight.shape[0] shard_offset = loaded_shard_id * shard_size param_data = param_data.narrow(0, shard_offset, shard_size) # If a param_shard_splitter is defined by the LinearMethod, use it. elif param_shard_splitter is not None: logical_widths = getattr(param, "logical_widths", None) param_data, loaded_weight = param_shard_splitter( param_data, loaded_weight, loaded_shard_id, logical_widths) # Special case for Fp8 scales. elif fp8_scales_shard_indexer is not None: param_data, loaded_weight = fp8_scales_shard_indexer( param_data, loaded_weight, loaded_shard_id) else: ignore_warning = getattr(param, "ignore_warning", False) if not ignore_warning: logger.warning( "Loading a weight without `output_dim` attribute in " "MergedColumnParallelLinear, assume the weight is " "the same for all partitions.") if fp8_scales_shard_indexer is None: if len(param_data.shape) == 0: param_data = param_data.reshape(1) if len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class QKVParallelLinear(ColumnParallelLinear): """Linear layers for the attention's QKV transformation. Linear layers for the linear transformation of the query, key, and value vectors in the attention layer. The weight matrix is concatenated along the output dimension. The layer is parallelized along the head dimension. When the number of key/value heads is smaller than the number of query heads (e.g., multi-query/grouped-query attention), the key/value head may be replicated while the query heads are partitioned. Args: hidden_size: input hidden state size of the transformer. head_size: size of each attention head. total_num_heads: total number of attention query heads. total_num_kv_heads: total number of attention key/value heads. If None, assume total_num_kv_heads = total_num_heads. bias: If true, add bias. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. """ def __init__(self, hidden_size: int, head_size: int, total_num_heads: int, total_num_kv_heads: Optional[int] = None, bias: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None): self.hidden_size = hidden_size self.head_size = head_size self.total_num_heads = total_num_heads if total_num_kv_heads is None: total_num_kv_heads = total_num_heads self.total_num_kv_heads = total_num_kv_heads # Divide the weight matrix along the last dimension. tp_size = get_tensor_model_parallel_world_size() self.num_heads = divide(self.total_num_heads, tp_size) if tp_size >= self.total_num_kv_heads: self.num_kv_heads = 1 self.num_kv_head_replicas = divide(tp_size, self.total_num_kv_heads) else: self.num_kv_heads = divide(self.total_num_kv_heads, tp_size) self.num_kv_head_replicas = 1 input_size = self.hidden_size output_size = (self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size self.output_sizes = [ self.num_heads * self.head_size * tp_size, # q_proj self.num_kv_heads * self.head_size * tp_size, # k_proj self.num_kv_heads * self.head_size * tp_size, # v_proj ] super().__init__(input_size=input_size, output_size=output_size, bias=bias, gather_output=False, skip_bias_add=skip_bias_add, params_dtype=params_dtype, quant_config=quant_config) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[str] = None): param_data = param.data output_dim = getattr(param, "output_dim", None) # Special case for AQLM codebooks. is_metadata = getattr(param, "is_metadata", False) param_shard_splitter = getattr(param, "shard_splitter", None) if output_dim is not None and param_shard_splitter is not None: raise NotImplementedError( "We do not currently support output_dim != None and " "shard_splitter != None for a parameter. Please open an issue." ) # If a parameter has defined a shard_splitter to be used for # the weight, it should be applied before the weight is # loaded/copied to the parameter. The shard_splitter applies # logic by using the loaded_shard_id to ensure that the loaded # param is loaded to the correct location # within the parameter defined by the linear method. if loaded_shard_id is None and param_shard_splitter is not None: raise NotImplementedError( "We do not currently support loaded_shard_id == None and " "shard_splitter != None for a parameter. Please open an issue." ) # Special case for Fp8 scales. fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer", None) if loaded_shard_id is None: # Loaded weight is already packed. if output_dim is None: temp = loaded_weight.repeat(param_data.shape) assert param_data.shape == temp.shape param_data.copy_(temp) return shard_offsets = [ # (shard_id, shard_offset, shard_size) ("q", 0, self.total_num_heads * self.head_size), ("k", self.total_num_heads * self.head_size, self.total_num_kv_heads * self.head_size), ("v", (self.total_num_heads + self.total_num_kv_heads) * self.head_size, self.total_num_kv_heads * self.head_size), ] packed_dim = getattr(param, "packed_dim", None) for shard_id, shard_offset, shard_size in shard_offsets: # Special case for Quantized Weights. # If quantized, we need to adjust the offset and size to account # for the packing. if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) loaded_weight_shard = loaded_weight.narrow( output_dim, shard_offset, shard_size) self.weight_loader(param, loaded_weight_shard, shard_id) return tp_rank = get_tensor_model_parallel_rank() assert loaded_shard_id in ["q", "k", "v"] # If output dim is defined, use the default loading process. if output_dim is not None: if loaded_shard_id == "q": shard_offset = 0 shard_size = self.num_heads * self.head_size elif loaded_shard_id == "k": shard_offset = self.num_heads * self.head_size shard_size = self.num_kv_heads * self.head_size elif loaded_shard_id == "v": shard_offset = (self.num_heads + self.num_kv_heads) * self.head_size shard_size = self.num_kv_heads * self.head_size # Special case for Quantized Weights. # If quantized, we need to adjust the offset and size to account # for the packing. packed_dim = getattr(param, "packed_dim", None) if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) use_bitsandbytes = getattr(param, "use_bitsandbytes", False) if use_bitsandbytes: orig_qkv_offsets = { "q": (0, self.num_heads * self.head_size), "k": (self.num_heads * self.head_size, self.num_kv_heads * self.head_size), "v": ((self.num_heads + self.num_kv_heads) * self.head_size, self.num_kv_heads * self.head_size), "total": ((self.num_heads + 2 * self.num_kv_heads) * self.head_size, 0) } shard_size, shard_offset = adjust_bitsandbytes_shard( param, orig_qkv_offsets, loaded_shard_id) param_data = param_data.narrow(output_dim, shard_offset, shard_size) if loaded_shard_id == "q": shard_id = tp_rank else: shard_id = tp_rank // self.num_kv_head_replicas start_idx = shard_id * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) # Special case for for AQLM codebooks. elif is_metadata: # metadata indicates fixed size concatenated along dim 0 shard_size = loaded_weight.shape[0] shard_index = ["q", "k", "v"].index(loaded_shard_id) param_data = param_data.narrow(0, shard_index * shard_size, shard_size) # If a param_shard_splitter is defined by the LinearMethod, use it. elif param_shard_splitter is not None: logical_widths = getattr(param, "logical_widths", None) param_data, loaded_weight = param_shard_splitter( param_data, loaded_weight, loaded_shard_id, logical_widths) # Special case for Fp8 scales. elif fp8_scales_shard_indexer is not None: param_data, loaded_weight = fp8_scales_shard_indexer( param_data, loaded_weight, loaded_shard_id) else: ignore_warning = getattr(param, "ignore_warning", False) if not ignore_warning: logger.warning( "Loading a weight without `output_dim` attribute in " "QKVParallelLinear, assume the weight is the same " "for all partitions.") if len(param_data.shape) == 0: param_data = param_data.reshape(1) if len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class RowParallelLinear(LinearBase): """Linear layer with row parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second dimension as: - - | A_1 | | . | A = | . | X = [X_1, ..., X_p] | . | | A_p | - - Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. Note that bias is not parallelized. input_is_parallel: If true, we assume that the input is already split across the GPUs and we do not split again. skip_bias_add: This was added to enable performance optimization where bias can be fused with other element-wise operations. We skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. """ def __init__(self, input_size: int, output_size: int, bias: bool = True, input_is_parallel: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, reduce_results: bool = True, quant_config: Optional[QuantizationConfig] = None): super().__init__(input_size, output_size, skip_bias_add, params_dtype, quant_config) self.input_is_parallel = input_is_parallel self.reduce_results = reduce_results # Divide the weight matrix along the last dimension. self.tp_size = get_tensor_model_parallel_world_size() self.input_size_per_partition = divide(input_size, self.tp_size) assert self.quant_method is not None self.quant_method.create_weights( layer=self, input_size_per_partition=self.input_size_per_partition, output_partition_sizes=[self.output_size], input_size=self.input_size, output_size=self.output_size, params_dtype=self.params_dtype, weight_loader=self.weight_loader) if not reduce_results and (bias and not skip_bias_add): raise ValueError("When not reduce the results, adding bias to the " "results can lead to incorrect results") if bias: self.bias = Parameter( torch.empty(self.output_size, dtype=params_dtype)) set_weight_attrs(self.bias, { "output_dim": 0, "weight_loader": self.weight_loader, }) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): # Special case for Fp8 scales. fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer", None) tp_rank = get_tensor_model_parallel_rank() input_dim = getattr(param, "input_dim", None) param_data = param.data if input_dim is not None: shard_size = param_data.shape[input_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size) # Special case for Fp8 scales. elif fp8_scales_shard_indexer is not None: param_data, loaded_weight = fp8_scales_shard_indexer(param_data, loaded_weight, shard_id=0) if fp8_scales_shard_indexer is None and len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def forward(self, input_): # Set up backprop all-reduce. if self.input_is_parallel: input_parallel = input_ else: tp_rank = get_tensor_model_parallel_rank() splitted_input = split_tensor_along_last_dim( input_, num_partitions=self.tp_size) input_parallel = splitted_input[tp_rank].contiguous() # Matrix multiply. assert self.quant_method is not None output_parallel = self.quant_method.apply(self, input_parallel) if self.reduce_results and self.tp_size > 1: output_ = tensor_model_parallel_all_reduce(output_parallel) else: output_ = output_parallel if not self.skip_bias_add: output = output_ + self.bias if self.bias is not None else output_ output_bias = None else: output = output_ output_bias = self.bias return output, output_bias def extra_repr(self) -> str: s = f"input_features={self.input_size_per_partition}" s += f", output_features={self.output_size}" s += f", bias={self.bias is not None}" s += f", tp_size={self.tp_size}" s += f", reduce_results={self.reduce_results}" return s ``` ## Evaluation Evaluated on the Open LLM Leaderboard evaluations through vLLM. ### Open LLM Leaderboard evaluation scores | | Phi-3-mini-128k-instruct-FP8 | neuralmagic/Phi-3-mini-128k-instruct-FP8
(this model) | | :------------------: | :----------------------: | :------------------------------------------------: | | arc-c
25-shot | 63.65 | 63.31 | | hellaswag
10-shot | 79.76 | 79.44 | | mmlu
5-shot | 68.10 | 68.08 | | truthfulqa
0-shot | 53.97 | 53.76 | | winogrande
5-shot | 73.72 | 72.45 | | gsm8k
5-shot | 75.59 | 72.86 | | **Average
Accuracy** | **69.13** | **68.32** | | **Recovery** | **100%** | **98.82%** |