--- tags: - mteb - sparse sparsity quantized onnx embeddings int8 model-index: - name: bge-small-en-v1.5-quant results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.19402985074626 - type: ap value: 37.562368912364036 - type: f1 value: 68.47046663470138 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.89432499999998 - type: ap value: 88.64572979375352 - type: f1 value: 91.87171177424113 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.71799999999999 - type: f1 value: 46.25791412217894 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 34.424 - type: map_at_10 value: 49.63 - type: map_at_100 value: 50.477000000000004 - type: map_at_1000 value: 50.483 - type: map_at_3 value: 45.389 - type: map_at_5 value: 47.888999999999996 - type: mrr_at_1 value: 34.78 - type: mrr_at_10 value: 49.793 - type: mrr_at_100 value: 50.632999999999996 - type: mrr_at_1000 value: 50.638000000000005 - type: mrr_at_3 value: 45.531 - type: mrr_at_5 value: 48.010000000000005 - type: ndcg_at_1 value: 34.424 - type: ndcg_at_10 value: 57.774 - type: ndcg_at_100 value: 61.248000000000005 - type: ndcg_at_1000 value: 61.378 - type: ndcg_at_3 value: 49.067 - type: ndcg_at_5 value: 53.561 - type: precision_at_1 value: 34.424 - type: precision_at_10 value: 8.364 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.915 - type: precision_at_5 value: 14.124999999999998 - type: recall_at_1 value: 34.424 - type: recall_at_10 value: 83.64200000000001 - type: recall_at_100 value: 98.506 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 59.744 - type: recall_at_5 value: 70.626 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 46.91874634333147 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 39.1201020016146 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.40334669601722 - type: mrr value: 75.33175042870333 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.00433892980047 - type: cos_sim_spearman value: 86.65558896421105 - type: euclidean_pearson value: 85.98927300398377 - type: euclidean_spearman value: 86.0905158476729 - type: manhattan_pearson value: 86.0272425017433 - type: manhattan_spearman value: 85.8929209838941 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.1038961038961 - type: f1 value: 85.06851570045757 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.42637694389153 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 33.89440321125906 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.111000000000004 - type: map_at_10 value: 39.067 - type: map_at_100 value: 40.519 - type: map_at_1000 value: 40.652 - type: map_at_3 value: 35.571999999999996 - type: map_at_5 value: 37.708999999999996 - type: mrr_at_1 value: 34.335 - type: mrr_at_10 value: 44.868 - type: mrr_at_100 value: 45.607 - type: mrr_at_1000 value: 45.655 - type: mrr_at_3 value: 41.798 - type: mrr_at_5 value: 43.786 - type: ndcg_at_1 value: 34.335 - type: ndcg_at_10 value: 45.513 - type: ndcg_at_100 value: 51.037 - type: ndcg_at_1000 value: 53.171 - type: ndcg_at_3 value: 40.131 - type: ndcg_at_5 value: 43.027 - type: precision_at_1 value: 34.335 - type: precision_at_10 value: 8.784 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.193 - type: precision_at_3 value: 19.361 - type: precision_at_5 value: 14.249 - type: recall_at_1 value: 28.111000000000004 - type: recall_at_10 value: 58.372 - type: recall_at_100 value: 81.631 - type: recall_at_1000 value: 95.192 - type: recall_at_3 value: 42.863 - type: recall_at_5 value: 50.924 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.437 - type: map_at_10 value: 37.942 - type: map_at_100 value: 39.108 - type: map_at_1000 value: 39.242 - type: map_at_3 value: 35.419 - type: map_at_5 value: 36.825 - type: mrr_at_1 value: 35.35 - type: mrr_at_10 value: 43.855 - type: mrr_at_100 value: 44.543 - type: mrr_at_1000 value: 44.588 - type: mrr_at_3 value: 41.826 - type: mrr_at_5 value: 42.937 - type: ndcg_at_1 value: 35.35 - type: ndcg_at_10 value: 43.32 - type: ndcg_at_100 value: 47.769 - type: ndcg_at_1000 value: 49.979 - type: ndcg_at_3 value: 39.709 - type: ndcg_at_5 value: 41.316 - type: precision_at_1 value: 35.35 - type: precision_at_10 value: 7.994 - type: precision_at_100 value: 1.323 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 18.96 - type: precision_at_5 value: 13.236 - type: recall_at_1 value: 28.437 - type: recall_at_10 value: 52.531000000000006 - type: recall_at_100 value: 71.79299999999999 - type: recall_at_1000 value: 85.675 - type: recall_at_3 value: 41.605 - type: recall_at_5 value: 46.32 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 37.364999999999995 - type: map_at_10 value: 49.324 - type: map_at_100 value: 50.458999999999996 - type: map_at_1000 value: 50.512 - type: map_at_3 value: 45.96 - type: map_at_5 value: 47.934 - type: mrr_at_1 value: 43.009 - type: mrr_at_10 value: 52.946000000000005 - type: mrr_at_100 value: 53.74100000000001 - type: mrr_at_1000 value: 53.76800000000001 - type: mrr_at_3 value: 50.554 - type: mrr_at_5 value: 51.964 - type: ndcg_at_1 value: 43.009 - type: ndcg_at_10 value: 55.143 - type: ndcg_at_100 value: 59.653999999999996 - type: ndcg_at_1000 value: 60.805 - type: ndcg_at_3 value: 49.605 - type: ndcg_at_5 value: 52.437 - type: precision_at_1 value: 43.009 - type: precision_at_10 value: 8.984 - type: precision_at_100 value: 1.209 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.09 - type: precision_at_5 value: 15.423 - type: recall_at_1 value: 37.364999999999995 - type: recall_at_10 value: 68.657 - type: recall_at_100 value: 88.155 - type: recall_at_1000 value: 96.48400000000001 - type: recall_at_3 value: 54.186 - type: recall_at_5 value: 60.848 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.827 - type: map_at_10 value: 31.721 - type: map_at_100 value: 32.812999999999995 - type: map_at_1000 value: 32.89 - type: map_at_3 value: 29.238999999999997 - type: map_at_5 value: 30.584 - type: mrr_at_1 value: 25.650000000000002 - type: mrr_at_10 value: 33.642 - type: mrr_at_100 value: 34.595 - type: mrr_at_1000 value: 34.650999999999996 - type: mrr_at_3 value: 31.205 - type: mrr_at_5 value: 32.499 - type: ndcg_at_1 value: 25.650000000000002 - type: ndcg_at_10 value: 36.366 - type: ndcg_at_100 value: 41.766 - type: ndcg_at_1000 value: 43.735 - type: ndcg_at_3 value: 31.447000000000003 - type: ndcg_at_5 value: 33.701 - type: precision_at_1 value: 25.650000000000002 - type: precision_at_10 value: 5.582 - type: precision_at_100 value: 0.872 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 13.107 - type: precision_at_5 value: 9.198 - type: recall_at_1 value: 23.827 - type: recall_at_10 value: 48.9 - type: recall_at_100 value: 73.917 - type: recall_at_1000 value: 88.787 - type: recall_at_3 value: 35.498000000000005 - type: recall_at_5 value: 40.929 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.47 - type: map_at_10 value: 22.679 - type: map_at_100 value: 23.823 - type: map_at_1000 value: 23.94 - type: map_at_3 value: 20.535999999999998 - type: map_at_5 value: 21.61 - type: mrr_at_1 value: 18.781 - type: mrr_at_10 value: 26.979 - type: mrr_at_100 value: 27.945999999999998 - type: mrr_at_1000 value: 28.016000000000002 - type: mrr_at_3 value: 24.648 - type: mrr_at_5 value: 25.947 - type: ndcg_at_1 value: 18.781 - type: ndcg_at_10 value: 27.55 - type: ndcg_at_100 value: 33.176 - type: ndcg_at_1000 value: 36.150999999999996 - type: ndcg_at_3 value: 23.456 - type: ndcg_at_5 value: 25.16 - type: precision_at_1 value: 18.781 - type: precision_at_10 value: 5.050000000000001 - type: precision_at_100 value: 0.9039999999999999 - type: precision_at_1000 value: 0.129 - type: precision_at_3 value: 11.235000000000001 - type: precision_at_5 value: 8.01 - type: recall_at_1 value: 15.47 - type: recall_at_10 value: 38.446000000000005 - type: recall_at_100 value: 63.199000000000005 - type: recall_at_1000 value: 84.719 - type: recall_at_3 value: 26.687 - type: recall_at_5 value: 31.196 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.285999999999998 - type: map_at_10 value: 35.701 - type: map_at_100 value: 37.062 - type: map_at_1000 value: 37.175999999999995 - type: map_at_3 value: 32.65 - type: map_at_5 value: 34.129 - type: mrr_at_1 value: 32.05 - type: mrr_at_10 value: 41.105000000000004 - type: mrr_at_100 value: 41.996 - type: mrr_at_1000 value: 42.047000000000004 - type: mrr_at_3 value: 38.466 - type: mrr_at_5 value: 39.766 - type: ndcg_at_1 value: 32.05 - type: ndcg_at_10 value: 41.516999999999996 - type: ndcg_at_100 value: 47.083999999999996 - type: ndcg_at_1000 value: 49.309 - type: ndcg_at_3 value: 36.254999999999995 - type: ndcg_at_5 value: 38.346999999999994 - type: precision_at_1 value: 32.05 - type: precision_at_10 value: 7.536 - type: precision_at_100 value: 1.202 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 17.004 - type: precision_at_5 value: 11.973 - type: recall_at_1 value: 26.285999999999998 - type: recall_at_10 value: 53.667 - type: recall_at_100 value: 76.97 - type: recall_at_1000 value: 91.691 - type: recall_at_3 value: 38.571 - type: recall_at_5 value: 44.131 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.595000000000002 - type: map_at_10 value: 31.352000000000004 - type: map_at_100 value: 32.652 - type: map_at_1000 value: 32.774 - type: map_at_3 value: 28.238000000000003 - type: map_at_5 value: 30.178 - type: mrr_at_1 value: 27.626 - type: mrr_at_10 value: 36.351 - type: mrr_at_100 value: 37.297000000000004 - type: mrr_at_1000 value: 37.362 - type: mrr_at_3 value: 33.885 - type: mrr_at_5 value: 35.358000000000004 - type: ndcg_at_1 value: 27.626 - type: ndcg_at_10 value: 36.795 - type: ndcg_at_100 value: 42.808 - type: ndcg_at_1000 value: 45.417 - type: ndcg_at_3 value: 31.744 - type: ndcg_at_5 value: 34.407 - type: precision_at_1 value: 27.626 - type: precision_at_10 value: 6.781 - type: precision_at_100 value: 1.159 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 15.221000000000002 - type: precision_at_5 value: 11.279 - type: recall_at_1 value: 22.595000000000002 - type: recall_at_10 value: 48.126000000000005 - type: recall_at_100 value: 74.24300000000001 - type: recall_at_1000 value: 92.276 - type: recall_at_3 value: 34.346 - type: recall_at_5 value: 41.065000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.237000000000002 - type: map_at_10 value: 28.626 - type: map_at_100 value: 29.494999999999997 - type: map_at_1000 value: 29.587999999999997 - type: map_at_3 value: 26.747 - type: map_at_5 value: 27.903 - type: mrr_at_1 value: 24.847 - type: mrr_at_10 value: 31.091 - type: mrr_at_100 value: 31.91 - type: mrr_at_1000 value: 31.977 - type: mrr_at_3 value: 29.218 - type: mrr_at_5 value: 30.391000000000002 - type: ndcg_at_1 value: 24.847 - type: ndcg_at_10 value: 32.452999999999996 - type: ndcg_at_100 value: 37.009 - type: ndcg_at_1000 value: 39.425 - type: ndcg_at_3 value: 28.848000000000003 - type: ndcg_at_5 value: 30.752000000000002 - type: precision_at_1 value: 24.847 - type: precision_at_10 value: 4.968999999999999 - type: precision_at_100 value: 0.8009999999999999 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 12.321 - type: precision_at_5 value: 8.62 - type: recall_at_1 value: 22.237000000000002 - type: recall_at_10 value: 41.942 - type: recall_at_100 value: 62.907000000000004 - type: recall_at_1000 value: 81.035 - type: recall_at_3 value: 32.05 - type: recall_at_5 value: 36.695 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 14.835 - type: map_at_10 value: 21.124000000000002 - type: map_at_100 value: 22.133 - type: map_at_1000 value: 22.258 - type: map_at_3 value: 19.076999999999998 - type: map_at_5 value: 20.18 - type: mrr_at_1 value: 17.791 - type: mrr_at_10 value: 24.438 - type: mrr_at_100 value: 25.332 - type: mrr_at_1000 value: 25.417 - type: mrr_at_3 value: 22.425 - type: mrr_at_5 value: 23.524 - type: ndcg_at_1 value: 17.791 - type: ndcg_at_10 value: 25.27 - type: ndcg_at_100 value: 30.362000000000002 - type: ndcg_at_1000 value: 33.494 - type: ndcg_at_3 value: 21.474 - type: ndcg_at_5 value: 23.189999999999998 - type: precision_at_1 value: 17.791 - type: precision_at_10 value: 4.58 - type: precision_at_100 value: 0.839 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 10.071 - type: precision_at_5 value: 7.337000000000001 - type: recall_at_1 value: 14.835 - type: recall_at_10 value: 34.534 - type: recall_at_100 value: 57.812 - type: recall_at_1000 value: 80.467 - type: recall_at_3 value: 23.938000000000002 - type: recall_at_5 value: 28.269 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.400000000000002 - type: map_at_10 value: 31.55 - type: map_at_100 value: 32.72 - type: map_at_1000 value: 32.830999999999996 - type: map_at_3 value: 28.942 - type: map_at_5 value: 30.403000000000002 - type: mrr_at_1 value: 27.705000000000002 - type: mrr_at_10 value: 35.778 - type: mrr_at_100 value: 36.705 - type: mrr_at_1000 value: 36.773 - type: mrr_at_3 value: 33.458 - type: mrr_at_5 value: 34.778 - type: ndcg_at_1 value: 27.705000000000002 - type: ndcg_at_10 value: 36.541000000000004 - type: ndcg_at_100 value: 42.016999999999996 - type: ndcg_at_1000 value: 44.571 - type: ndcg_at_3 value: 31.845000000000002 - type: ndcg_at_5 value: 34.056 - type: precision_at_1 value: 27.705000000000002 - type: precision_at_10 value: 6.166 - type: precision_at_100 value: 0.993 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 14.302999999999999 - type: precision_at_5 value: 10.187 - type: recall_at_1 value: 23.400000000000002 - type: recall_at_10 value: 47.61 - type: recall_at_100 value: 71.69200000000001 - type: recall_at_1000 value: 89.652 - type: recall_at_3 value: 35.026 - type: recall_at_5 value: 40.48 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.409 - type: map_at_10 value: 29.642000000000003 - type: map_at_100 value: 31.213 - type: map_at_1000 value: 31.418000000000003 - type: map_at_3 value: 26.811 - type: map_at_5 value: 28.433999999999997 - type: mrr_at_1 value: 25.494 - type: mrr_at_10 value: 33.735 - type: mrr_at_100 value: 34.791 - type: mrr_at_1000 value: 34.848 - type: mrr_at_3 value: 31.225 - type: mrr_at_5 value: 32.688 - type: ndcg_at_1 value: 25.494 - type: ndcg_at_10 value: 35.038000000000004 - type: ndcg_at_100 value: 41.499 - type: ndcg_at_1000 value: 44.183 - type: ndcg_at_3 value: 30.305 - type: ndcg_at_5 value: 32.607 - type: precision_at_1 value: 25.494 - type: precision_at_10 value: 6.739000000000001 - type: precision_at_100 value: 1.439 - type: precision_at_1000 value: 0.233 - type: precision_at_3 value: 14.163 - type: precision_at_5 value: 10.474 - type: recall_at_1 value: 21.409 - type: recall_at_10 value: 46.033 - type: recall_at_100 value: 74.932 - type: recall_at_1000 value: 92.35600000000001 - type: recall_at_3 value: 32.858 - type: recall_at_5 value: 38.675 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.145 - type: map_at_10 value: 24.712 - type: map_at_100 value: 25.813000000000002 - type: map_at_1000 value: 25.935000000000002 - type: map_at_3 value: 22.33 - type: map_at_5 value: 23.524 - type: mrr_at_1 value: 19.224 - type: mrr_at_10 value: 26.194 - type: mrr_at_100 value: 27.208 - type: mrr_at_1000 value: 27.3 - type: mrr_at_3 value: 23.906 - type: mrr_at_5 value: 24.988 - type: ndcg_at_1 value: 19.224 - type: ndcg_at_10 value: 29.015 - type: ndcg_at_100 value: 34.224 - type: ndcg_at_1000 value: 37.235 - type: ndcg_at_3 value: 24.22 - type: ndcg_at_5 value: 26.176 - type: precision_at_1 value: 19.224 - type: precision_at_10 value: 4.713 - type: precision_at_100 value: 0.787 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 10.290000000000001 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 18.145 - type: recall_at_10 value: 40.875 - type: recall_at_100 value: 64.371 - type: recall_at_1000 value: 86.67399999999999 - type: recall_at_3 value: 27.717000000000002 - type: recall_at_5 value: 32.381 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.845 - type: f1 value: 41.70045120106269 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.3476 - type: ap value: 85.26891728027032 - type: f1 value: 89.33488973832894 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.67441860465115 - type: f1 value: 92.48821366022861 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.02872777017784 - type: f1 value: 57.28822860484337 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.01479488903833 - type: f1 value: 71.83716204573571 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.95897780766644 - type: f1 value: 77.80380046125542 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.897956840478948 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.71493744677591 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.279419910393734 - type: mrr value: 32.41989483774563 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 50.49612915002382 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.29912718965653 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.86793477948164 - type: cos_sim_spearman value: 79.43675709317894 - type: euclidean_pearson value: 81.42564463337872 - type: euclidean_spearman value: 79.39138648510273 - type: manhattan_pearson value: 81.31167449689285 - type: manhattan_spearman value: 79.28411420758785 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.43490408077298 - type: cos_sim_spearman value: 76.16878340109265 - type: euclidean_pearson value: 80.6016219080782 - type: euclidean_spearman value: 75.67063072565917 - type: manhattan_pearson value: 80.7238920179759 - type: manhattan_spearman value: 75.85631683403953 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.03882477767792 - type: cos_sim_spearman value: 84.15171505206217 - type: euclidean_pearson value: 84.11692506470922 - type: euclidean_spearman value: 84.78589046217311 - type: manhattan_pearson value: 83.98651139454486 - type: manhattan_spearman value: 84.64928563751276 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.11158600428418 - type: cos_sim_spearman value: 81.48561519933875 - type: euclidean_pearson value: 83.21025907155807 - type: euclidean_spearman value: 81.68699235487654 - type: manhattan_pearson value: 83.16704771658094 - type: manhattan_spearman value: 81.7133110412898 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.1514510686502 - type: cos_sim_spearman value: 88.11449450494452 - type: euclidean_pearson value: 87.75854949349939 - type: euclidean_spearman value: 88.4055148221637 - type: manhattan_pearson value: 87.71487828059706 - type: manhattan_spearman value: 88.35301381116254 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.36838640113687 - type: cos_sim_spearman value: 84.98776974283366 - type: euclidean_pearson value: 84.0617526427129 - type: euclidean_spearman value: 85.04234805662242 - type: manhattan_pearson value: 83.87433162971784 - type: manhattan_spearman value: 84.87174280390242 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.72465270691285 - type: cos_sim_spearman value: 87.97672332532184 - type: euclidean_pearson value: 88.78764701492182 - type: euclidean_spearman value: 88.3509718074474 - type: manhattan_pearson value: 88.73024739256215 - type: manhattan_spearman value: 88.24149566970154 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.65195562203238 - type: cos_sim_spearman value: 65.0726777678982 - type: euclidean_pearson value: 65.84698245675273 - type: euclidean_spearman value: 65.13121502162804 - type: manhattan_pearson value: 65.96149904857049 - type: manhattan_spearman value: 65.39983948112955 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.2642818050049 - type: cos_sim_spearman value: 86.30633382439257 - type: euclidean_pearson value: 86.46510435905633 - type: euclidean_spearman value: 86.62650496446 - type: manhattan_pearson value: 86.2546330637872 - type: manhattan_spearman value: 86.46309860938591 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.009977767778 - type: mrr value: 95.59795143128476 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.84257425742574 - type: cos_sim_ap value: 96.25445889914926 - type: cos_sim_f1 value: 92.03805708562844 - type: cos_sim_precision value: 92.1765295887663 - type: cos_sim_recall value: 91.9 - type: dot_accuracy value: 99.83069306930693 - type: dot_ap value: 96.00517778550396 - type: dot_f1 value: 91.27995920448751 - type: dot_precision value: 93.1321540062435 - type: dot_recall value: 89.5 - type: euclidean_accuracy value: 99.84455445544555 - type: euclidean_ap value: 96.14761524546034 - type: euclidean_f1 value: 91.97751660705163 - type: euclidean_precision value: 94.04388714733543 - type: euclidean_recall value: 90.0 - type: manhattan_accuracy value: 99.84158415841584 - type: manhattan_ap value: 96.17014673429341 - type: manhattan_f1 value: 91.93790686029043 - type: manhattan_precision value: 92.07622868605817 - type: manhattan_recall value: 91.8 - type: max_accuracy value: 99.84455445544555 - type: max_ap value: 96.25445889914926 - type: max_f1 value: 92.03805708562844 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 59.26454683321409 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.75520575713765 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.74607778008495 - type: mrr value: 53.55101699770818 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.5008 - type: ap value: 13.64158304183089 - type: f1 value: 53.50073331072236 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.01980758347483 - type: f1 value: 60.35679678249753 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 45.09419243325077 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.68874053764081 - type: cos_sim_ap value: 73.26334732095694 - type: cos_sim_f1 value: 68.01558376272465 - type: cos_sim_precision value: 64.93880489560834 - type: cos_sim_recall value: 71.39841688654354 - type: dot_accuracy value: 84.71121177802945 - type: dot_ap value: 70.33606362522605 - type: dot_f1 value: 65.0887573964497 - type: dot_precision value: 63.50401606425703 - type: dot_recall value: 66.75461741424802 - type: euclidean_accuracy value: 85.80795136198367 - type: euclidean_ap value: 73.43201285001163 - type: euclidean_f1 value: 68.33166833166834 - type: euclidean_precision value: 64.86486486486487 - type: euclidean_recall value: 72.18997361477572 - type: manhattan_accuracy value: 85.62317458425225 - type: manhattan_ap value: 73.21212085536185 - type: manhattan_f1 value: 68.01681314482232 - type: manhattan_precision value: 65.74735286875153 - type: manhattan_recall value: 70.44854881266491 - type: max_accuracy value: 85.80795136198367 - type: max_ap value: 73.43201285001163 - type: max_f1 value: 68.33166833166834 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.81709162882757 - type: cos_sim_ap value: 85.63540257309367 - type: cos_sim_f1 value: 77.9091382258904 - type: cos_sim_precision value: 75.32710280373833 - type: cos_sim_recall value: 80.67446874037573 - type: dot_accuracy value: 88.04478596654636 - type: dot_ap value: 84.16371725220706 - type: dot_f1 value: 76.45949643213666 - type: dot_precision value: 73.54719396827655 - type: dot_recall value: 79.61194949183862 - type: euclidean_accuracy value: 88.9296386851399 - type: euclidean_ap value: 85.71894615274715 - type: euclidean_f1 value: 78.12952767313823 - type: euclidean_precision value: 73.7688098495212 - type: euclidean_recall value: 83.03818909762857 - type: manhattan_accuracy value: 88.89276982186519 - type: manhattan_ap value: 85.6838514059479 - type: manhattan_f1 value: 78.06861875184856 - type: manhattan_precision value: 75.09246088193457 - type: manhattan_recall value: 81.29042192793348 - type: max_accuracy value: 88.9296386851399 - type: max_ap value: 85.71894615274715 - type: max_f1 value: 78.12952767313823 license: mit language: - en --- # bge-small-en-v1.5-quant
latency
## Usage This is the quantized (INT8) ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) embeddings model accelerated with [Sparsify](https://github.com/neuralmagic/sparsify) for quantization and [DeepSparseSentenceTransformers](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers) for inference. ```bash pip install -U deepsparse-nightly[sentence_transformers] ``` ```python from deepsparse.sentence_transformers import DeepSparseSentenceTransformer model = DeepSparseSentenceTransformer('zeroshot/bge-small-en-v1.5-quant', export=False) # Our sentences we like to encode sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] # Sentences are encoded by calling model.encode() embeddings = model.encode(sentences) # Print the embeddings for sentence, embedding in zip(sentences, embeddings): print("Sentence:", sentence) print("Embedding:", embedding.shape) print("") ``` For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).