--- tags: - mteb model-index: - name: bge-small-en-v1.5-quant results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.19402985074626 - type: ap value: 37.562368912364036 - type: f1 value: 68.47046663470138 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.89432499999998 - type: ap value: 88.64572979375352 - type: f1 value: 91.87171177424113 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.71799999999999 - type: f1 value: 46.25791412217894 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 34.424 - type: map_at_10 value: 49.63 - type: map_at_100 value: 50.477000000000004 - type: map_at_1000 value: 50.483 - type: map_at_3 value: 45.389 - type: map_at_5 value: 47.888999999999996 - type: mrr_at_1 value: 34.78 - type: mrr_at_10 value: 49.793 - type: mrr_at_100 value: 50.632999999999996 - type: mrr_at_1000 value: 50.638000000000005 - type: mrr_at_3 value: 45.531 - type: mrr_at_5 value: 48.010000000000005 - type: ndcg_at_1 value: 34.424 - type: ndcg_at_10 value: 57.774 - type: ndcg_at_100 value: 61.248000000000005 - type: ndcg_at_1000 value: 61.378 - type: ndcg_at_3 value: 49.067 - type: ndcg_at_5 value: 53.561 - type: precision_at_1 value: 34.424 - type: precision_at_10 value: 8.364 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.915 - type: precision_at_5 value: 14.124999999999998 - type: recall_at_1 value: 34.424 - type: recall_at_10 value: 83.64200000000001 - type: recall_at_100 value: 98.506 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 59.744 - type: recall_at_5 value: 70.626 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.40334669601722 - type: mrr value: 75.33175042870333 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.00433892980047 - type: cos_sim_spearman value: 86.65558896421105 - type: euclidean_pearson value: 85.98927300398377 - type: euclidean_spearman value: 86.0905158476729 - type: manhattan_pearson value: 86.0272425017433 - type: manhattan_spearman value: 85.8929209838941 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.1038961038961 - type: f1 value: 85.06851570045757 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.845 - type: f1 value: 41.70045120106269 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.3476 - type: ap value: 85.26891728027032 - type: f1 value: 89.33488973832894 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.67441860465115 - type: f1 value: 92.48821366022861 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.02872777017784 - type: f1 value: 57.28822860484337 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.01479488903833 - type: f1 value: 71.83716204573571 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.95897780766644 - type: f1 value: 77.80380046125542 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.86793477948164 - type: cos_sim_spearman value: 79.43675709317894 - type: euclidean_pearson value: 81.42564463337872 - type: euclidean_spearman value: 79.39138648510273 - type: manhattan_pearson value: 81.31167449689285 - type: manhattan_spearman value: 79.28411420758785 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.43490408077298 - type: cos_sim_spearman value: 76.16878340109265 - type: euclidean_pearson value: 80.6016219080782 - type: euclidean_spearman value: 75.67063072565917 - type: manhattan_pearson value: 80.7238920179759 - type: manhattan_spearman value: 75.85631683403953 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.03882477767792 - type: cos_sim_spearman value: 84.15171505206217 - type: euclidean_pearson value: 84.11692506470922 - type: euclidean_spearman value: 84.78589046217311 - type: manhattan_pearson value: 83.98651139454486 - type: manhattan_spearman value: 84.64928563751276 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.11158600428418 - type: cos_sim_spearman value: 81.48561519933875 - type: euclidean_pearson value: 83.21025907155807 - type: euclidean_spearman value: 81.68699235487654 - type: manhattan_pearson value: 83.16704771658094 - type: manhattan_spearman value: 81.7133110412898 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.1514510686502 - type: cos_sim_spearman value: 88.11449450494452 - type: euclidean_pearson value: 87.75854949349939 - type: euclidean_spearman value: 88.4055148221637 - type: manhattan_pearson value: 87.71487828059706 - type: manhattan_spearman value: 88.35301381116254 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.36838640113687 - type: cos_sim_spearman value: 84.98776974283366 - type: euclidean_pearson value: 84.0617526427129 - type: euclidean_spearman value: 85.04234805662242 - type: manhattan_pearson value: 83.87433162971784 - type: manhattan_spearman value: 84.87174280390242 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.72465270691285 - type: cos_sim_spearman value: 87.97672332532184 - type: euclidean_pearson value: 88.78764701492182 - type: euclidean_spearman value: 88.3509718074474 - type: manhattan_pearson value: 88.73024739256215 - type: manhattan_spearman value: 88.24149566970154 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.65195562203238 - type: cos_sim_spearman value: 65.0726777678982 - type: euclidean_pearson value: 65.84698245675273 - type: euclidean_spearman value: 65.13121502162804 - type: manhattan_pearson value: 65.96149904857049 - type: manhattan_spearman value: 65.39983948112955 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.2642818050049 - type: cos_sim_spearman value: 86.30633382439257 - type: euclidean_pearson value: 86.46510435905633 - type: euclidean_spearman value: 86.62650496446 - type: manhattan_pearson value: 86.2546330637872 - type: manhattan_spearman value: 86.46309860938591 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.84257425742574 - type: cos_sim_ap value: 96.25445889914926 - type: cos_sim_f1 value: 92.03805708562844 - type: cos_sim_precision value: 92.1765295887663 - type: cos_sim_recall value: 91.9 - type: dot_accuracy value: 99.83069306930693 - type: dot_ap value: 96.00517778550396 - type: dot_f1 value: 91.27995920448751 - type: dot_precision value: 93.1321540062435 - type: dot_recall value: 89.5 - type: euclidean_accuracy value: 99.84455445544555 - type: euclidean_ap value: 96.14761524546034 - type: euclidean_f1 value: 91.97751660705163 - type: euclidean_precision value: 94.04388714733543 - type: euclidean_recall value: 90 - type: manhattan_accuracy value: 99.84158415841584 - type: manhattan_ap value: 96.17014673429341 - type: manhattan_f1 value: 91.93790686029043 - type: manhattan_precision value: 92.07622868605817 - type: manhattan_recall value: 91.8 - type: max_accuracy value: 99.84455445544555 - type: max_ap value: 96.25445889914926 - type: max_f1 value: 92.03805708562844 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.5008 - type: ap value: 13.64158304183089 - type: f1 value: 53.50073331072236 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.01980758347483 - type: f1 value: 60.35679678249753 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.68874053764081 - type: cos_sim_ap value: 73.26334732095694 - type: cos_sim_f1 value: 68.01558376272465 - type: cos_sim_precision value: 64.93880489560834 - type: cos_sim_recall value: 71.39841688654354 - type: dot_accuracy value: 84.71121177802945 - type: dot_ap value: 70.33606362522605 - type: dot_f1 value: 65.0887573964497 - type: dot_precision value: 63.50401606425703 - type: dot_recall value: 66.75461741424802 - type: euclidean_accuracy value: 85.80795136198367 - type: euclidean_ap value: 73.43201285001163 - type: euclidean_f1 value: 68.33166833166834 - type: euclidean_precision value: 64.86486486486487 - type: euclidean_recall value: 72.18997361477572 - type: manhattan_accuracy value: 85.62317458425225 - type: manhattan_ap value: 73.21212085536185 - type: manhattan_f1 value: 68.01681314482232 - type: manhattan_precision value: 65.74735286875153 - type: manhattan_recall value: 70.44854881266491 - type: max_accuracy value: 85.80795136198367 - type: max_ap value: 73.43201285001163 - type: max_f1 value: 68.33166833166834 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.81709162882757 - type: cos_sim_ap value: 85.63540257309367 - type: cos_sim_f1 value: 77.9091382258904 - type: cos_sim_precision value: 75.32710280373833 - type: cos_sim_recall value: 80.67446874037573 - type: dot_accuracy value: 88.04478596654636 - type: dot_ap value: 84.16371725220706 - type: dot_f1 value: 76.45949643213666 - type: dot_precision value: 73.54719396827655 - type: dot_recall value: 79.61194949183862 - type: euclidean_accuracy value: 88.9296386851399 - type: euclidean_ap value: 85.71894615274715 - type: euclidean_f1 value: 78.12952767313823 - type: euclidean_precision value: 73.7688098495212 - type: euclidean_recall value: 83.03818909762857 - type: manhattan_accuracy value: 88.89276982186519 - type: manhattan_ap value: 85.6838514059479 - type: manhattan_f1 value: 78.06861875184856 - type: manhattan_precision value: 75.09246088193457 - type: manhattan_recall value: 81.29042192793348 - type: max_accuracy value: 88.9296386851399 - type: max_ap value: 85.71894615274715 - type: max_f1 value: 78.12952767313823 license: mit language: - en --- --- license: mit --- This is the quantized ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model for embeddings created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export and Neural Magic's [Sparsify](https://account.neuralmagic.com/signin?client_id=d04a5f0c-983d-11ed-88a6-971073f187d3&return_to=https%3A//accounts.neuralmagic.com/v1/connect/authorize%3Fscope%3Dsparsify%3Aread%2Bsparsify%3Awrite%2Buser%3Aapi-key%3Aread%2Buser%3Aprofile%3Awrite%2Buser%3Aprofile%3Aread%26response_type%3Dcode%26code_challenge_method%3DS256%26redirect_uri%3Dhttps%3A//apps.neuralmagic.com/sparsify/oidc/callback.html%26state%3Da9b466a6193c4a7b92cba469408d2495%26client_id%3Dd04a5f0c-983d-11ed-88a6-971073f187d3%26code_challenge%3DP0EkmKBpplTb7crJOGS8YLSwT8UH-BeuD0wuE4JTORQ%26response_mode%3Dquery) for One-Shot INT8 quantization.