--- datasets: - gsm8k tags: - deepsparse --- # mpt-7b-gsm8k **Paper**: [Sparse Finetuning for Inference Acceleration of Large Language Models](https://arxiv.org/abs/2310.06927) **Code**: https://github.com/neuralmagic/deepsparse/tree/main/research/mpt This model was produced from a [MPT-7B base model](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pt) finetuned on the GSM8k dataset for 2 epochs and quantized. GSM8k zero-shot accuracy with [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness) : 27.8% All MPT model weights are available on [SparseZoo](https://sparsezoo.neuralmagic.com/?datasets=gsm8k&ungrouped=true) and CPU speedup for generative inference can be reproduced by following the instructions at [DeepSparse](https://github.com/neuralmagic/deepsparse/tree/main/research/mpt) | Model Links | Compression | | --------------------------------------------------------------------------------------------------------- | --------------------------------- | | [neuralmagic/mpt-7b-gsm8k-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-quant) | Quantization (W8A8) | | [neuralmagic/mpt-7b-gsm8k-pruned40-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned40-quant) | Quantization (W8A8) & 40% Pruning | | [neuralmagic/mpt-7b-gsm8k-pruned50-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned50-quant) | Quantization (W8A8) & 50% Pruning | | [neuralmagic/mpt-7b-gsm8k-pruned60-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned60-quant) | Quantization (W8A8) & 60% Pruning | | [neuralmagic/mpt-7b-gsm8k-pruned70-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned70-quant) | Quantization (W8A8) & 70% Pruning | | [neuralmagic/mpt-7b-gsm8k-pruned70-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned75-quant) | Quantization (W8A8) & 75% Pruning | | [neuralmagic/mpt-7b-gsm8k-pruned80-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned80-quant) | Quantization (W8A8) & 80% Pruning | For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).