File size: 3,623 Bytes
5988aaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language: pt
license: mit
tags:
- bert
- pytorch
datasets:
- brWaC
---
# BERTimbau Large (aka "bert-large-portuguese-cased")
![Bert holding a berimbau](https://imgur.com/JZ7Hynh.jpg)
## Introduction
BERTimbau Large is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large.
For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/).
## Available models
| Model | Arch. | #Layers | #Params |
| ---------------------------------------- | ---------- | ------- | ------- |
| `neuralmind/bert-base-portuguese-cased` | BERT-Base | 12 | 110M |
| `neuralmind/bert-large-portuguese-cased` | BERT-Large | 24 | 335M |
## Usage
```python
from transformers import AutoTokenizer # Or BertTokenizer
from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads
from transformers import AutoModel # or BertModel, for BERT without pretraining heads
model = AutoModelForPreTraining.from_pretrained('neuralmind/bert-large-portuguese-cased')
tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-large-portuguese-cased', do_lower_case=False)
```
### Masked language modeling prediction example
```python
from transformers import pipeline
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
pipe('Tinha uma [MASK] no meio do caminho.')
# [{'score': 0.5054386258125305,
# 'sequence': '[CLS] Tinha uma pedra no meio do caminho. [SEP]',
# 'token': 5028,
# 'token_str': 'pedra'},
# {'score': 0.05616172030568123,
# 'sequence': '[CLS] Tinha uma curva no meio do caminho. [SEP]',
# 'token': 9562,
# 'token_str': 'curva'},
# {'score': 0.02348282001912594,
# 'sequence': '[CLS] Tinha uma parada no meio do caminho. [SEP]',
# 'token': 6655,
# 'token_str': 'parada'},
# {'score': 0.01795753836631775,
# 'sequence': '[CLS] Tinha uma mulher no meio do caminho. [SEP]',
# 'token': 2606,
# 'token_str': 'mulher'},
# {'score': 0.015246033668518066,
# 'sequence': '[CLS] Tinha uma luz no meio do caminho. [SEP]',
# 'token': 3377,
# 'token_str': 'luz'}]
```
### For BERT embeddings
```python
import torch
model = AutoModel.from_pretrained('neuralmind/bert-large-portuguese-cased')
input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt')
with torch.no_grad():
outs = model(input_ids)
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
# encoded.shape: (8, 1024)
# tensor([[ 1.1872, 0.5606, -0.2264, ..., 0.0117, -0.1618, -0.2286],
# [ 1.3562, 0.1026, 0.1732, ..., -0.3855, -0.0832, -0.1052],
# [ 0.2988, 0.2528, 0.4431, ..., 0.2684, -0.5584, 0.6524],
# ...,
# [ 0.3405, -0.0140, -0.0748, ..., 0.6649, -0.8983, 0.5802],
# [ 0.1011, 0.8782, 0.1545, ..., -0.1768, -0.8880, -0.1095],
# [ 0.7912, 0.9637, -0.3859, ..., 0.2050, -0.1350, 0.0432]])
```
## Citation
If you use our work, please cite:
```bibtex
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
```
|