File size: 2,265 Bytes
e66d572
16b5869
 
e66d572
 
 
 
 
 
 
 
 
 
 
16b5869
 
e66d572
16b5869
e66d572
16b5869
e66d572
16b5869
e66d572
16b5869
e66d572
 
 
 
 
 
 
 
16b5869
e66d572
16b5869
e66d572
16b5869
e66d572
 
 
16b5869
e66d572
 
16b5869
e66d572
 
 
 
 
 
 
 
16b5869
 
e66d572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b5869
 
e66d572
16b5869
e66d572
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

---
language: bn
tags:
- collaborative
- bengali
- SequenceClassification
license: apache-2.0
datasets: IndicGlue 
metrics:
- Loss
- Accuracy
- Precision
- Recall
---

# sahajBERT News Article Classification

## Model description

[sahajBERT](https://huggingface.co/neuropark/sahajBERT) fine-tuned for news article classification using the `sna.bn` split of [IndicGlue](https://huggingface.co/datasets/indic_glue). 

The model is trained for classifying articles into 5 different classes:

| Label id | Label |
|:--------:|:----:|
|0 | kolkata|
|1 | state|
|2 | national|
|3 | sports|
|4 | entertainment|
|5 | international|

## Intended uses & limitations

#### How to use

You can use this model directly with a pipeline for Sequence Classification:
```python
from transformers import AlbertForSequenceClassification, TextClassificationPipeline, PreTrainedTokenizerFast

# Initialize tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NCC")

# Initialize model
model = AlbertForSequenceClassification.from_pretrained("neuropark/sahajBERT-NCC")

# Initialize pipeline
pipeline = TextClassificationPipeline(tokenizer=tokenizer, model=model)

raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
output = pipeline(raw_text)
```

#### Limitations and bias

<!-- Provide examples of latent issues and potential remediations. -->
WIP

## Training data

The model was initialized with pre-trained weights of [sahajBERT](https://huggingface.co/neuropark/sahajBERT) at step 18149 and trained on the `sna.bn` split of [IndicGlue](https://huggingface.co/datasets/indic_glue). 

## Training procedure

Coming soon! 
<!-- ```bibtex
@inproceedings{...,
  year={2020}
}
``` -->

## Eval results

accuracy: 0.920623671155209

loss: 0.2719293534755707

macro_f1: 0.8924089161713425

macro_precision: 0.891858452957785

macro_recall: 0.8978917764271065

micro_f1: 0.920623671155209

micro_precision: 0.920623671155209

micro_recall: 0.920623671155209

weighted_f1: 0.9205158122362266

weighted_precision: 0.9236142214371135

weighted_recall: 0.920623671155209



### BibTeX entry and citation info

Coming soon! 
<!-- ```bibtex
@inproceedings{...,
  year={2020}
}
``` -->