newbie4000 commited on
Commit
afe3ea7
1 Parent(s): 933dae8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.87 +/- 1.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5302b43654912b37906c56cc57998758d07aa40ee96fb25b6745d97ba632428c
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6149f5ef70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f6149f5b900>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674497154423020349,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPMbcPmgRFDyoSRI/PMbcPmgRFDyoSRI/PMbcPmgRFDyoSRI/PMbcPmgRFDyoSRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6nzGPvCbFT6GEC89na+qP9ARDj8Sypu/0Ywkv6ukhT/5PbI/9AFsPxJ9PL+EgbC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA8xtw+aBEUPKhJEj97VAA8oRYPO816hzs8xtw+aBEUPKhJEj97VAA8oRYPO816hzs8xtw+aBEUPKhJEj97VAA8oRYPO816hzs8xtw+aBEUPKhJEj97VAA8oRYPO816hzuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4311999 0.00903735 0.5714364 ]\n [0.4311999 0.00903735 0.5714364 ]\n [0.4311999 0.00903735 0.5714364 ]\n [0.4311999 0.00903735 0.5714364 ]]",
60
+ "desired_goal": "[[ 0.38767177 0.14610267 0.04274037]\n [ 1.3334843 0.5549593 -1.2171042 ]\n [-0.6427737 1.0440878 1.3925163 ]\n [ 0.9219048 -0.7362834 -1.3789525 ]]",
61
+ "observation": "[[0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]\n [0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]\n [0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]\n [0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIbxNvXUs3D2DLAA+ItmqPW4eJLvwJVM9g6WIvdMiGj2R2TY+MWILPFN7BDxoul4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.05022824 0.10750667 0.1251698 ]\n [ 0.08342196 -0.00250426 0.05154985]\n [-0.06672194 0.03763087 0.17856432]\n [ 0.0085073 0.00808604 0.21750796]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRz6veOqRDcCUhpRSlIwBbJRLMowBdJRHQKS2ba+N96V1fZQoaAZoCWgPQwgfLc4Y5gT3v5SGlFKUaBVLMmgWR0CktjHdXT3JdX2UKGgGaAloD0MIzgAXZMsy+r+UhpRSlGgVSzJoFkdApLX1opQUH3V9lChoBmgJaA9DCExvfy4aMgLAlIaUUpRoFUsyaBZHQKS1tuDSPU91fZQoaAZoCWgPQwiN7iB2ppD3v5SGlFKUaBVLMmgWR0Ckt3M6ij+KdX2UKGgGaAloD0MIaM76lGMSC8CUhpRSlGgVSzJoFkdApLc3i3ocJnV9lChoBmgJaA9DCLSULCehJBHAlIaUUpRoFUsyaBZHQKS2+2uPmxN1fZQoaAZoCWgPQwjdlsgFZzACwJSGlFKUaBVLMmgWR0CktryMDOkddX2UKGgGaAloD0MInDI334hu+7+UhpRSlGgVSzJoFkdApLieiBXjl3V9lChoBmgJaA9DCDz4iQPo1wLAlIaUUpRoFUsyaBZHQKS4YxbjcVR1fZQoaAZoCWgPQwgpsACmDFwBwJSGlFKUaBVLMmgWR0CkuCcR+SbIdX2UKGgGaAloD0MIob36eOi7/L+UhpRSlGgVSzJoFkdApLfoqy4WlHV9lChoBmgJaA9DCO5e7pOjgAzAlIaUUpRoFUsyaBZHQKS51Z6lchV1fZQoaAZoCWgPQwjmApfHmpH4v5SGlFKUaBVLMmgWR0CkuZoKtxMndX2UKGgGaAloD0MIP5C8cyiD9r+UhpRSlGgVSzJoFkdApLld/c32mHV9lChoBmgJaA9DCIIAGTp20AvAlIaUUpRoFUsyaBZHQKS5H4dIXj51fZQoaAZoCWgPQwjswDkjSnsIwJSGlFKUaBVLMmgWR0CkuwCBwuM/dX2UKGgGaAloD0MIAaYMHNCyBsCUhpRSlGgVSzJoFkdApLrE76pHZ3V9lChoBmgJaA9DCBssnKT5cxDAlIaUUpRoFUsyaBZHQKS6iNoakyl1fZQoaAZoCWgPQwg9K2nFN6QQwJSGlFKUaBVLMmgWR0CkukpoK2KEdX2UKGgGaAloD0MIo68gzVi0DMCUhpRSlGgVSzJoFkdApLwrJ6po9XV9lChoBmgJaA9DCNkj1Ayp4hDAlIaUUpRoFUsyaBZHQKS774dIXj51fZQoaAZoCWgPQwhauKzCZsAJwJSGlFKUaBVLMmgWR0Cku7NoSL62dX2UKGgGaAloD0MIxVbQtMTK/b+UhpRSlGgVSzJoFkdApLt07lq8DnV9lChoBmgJaA9DCFjmrboO9Q3AlIaUUpRoFUsyaBZHQKS9XbL2YfJ1fZQoaAZoCWgPQwjjF15J8hz/v5SGlFKUaBVLMmgWR0CkvSIXKr7wdX2UKGgGaAloD0MIrizRWWaRCcCUhpRSlGgVSzJoFkdApLzmDWbw0HV9lChoBmgJaA9DCGIQWDm06AzAlIaUUpRoFUsyaBZHQKS8p5yEL6V1fZQoaAZoCWgPQwhcPSe9bxwBwJSGlFKUaBVLMmgWR0CkvoDSPU8WdX2UKGgGaAloD0MI6spneR5c8r+UhpRSlGgVSzJoFkdApL5FPacqfHV9lChoBmgJaA9DCGEW2jnN4gXAlIaUUpRoFUsyaBZHQKS+CQ6IWP91fZQoaAZoCWgPQwhgdeRIZ0AKwJSGlFKUaBVLMmgWR0CkvcqZ+hGpdX2UKGgGaAloD0MIWKmgourHEsCUhpRSlGgVSzJoFkdApL+o9FF2FHV9lChoBmgJaA9DCHyd1JelHQLAlIaUUpRoFUsyaBZHQKS/bUhFEzB1fZQoaAZoCWgPQwgtJctJKH3/v5SGlFKUaBVLMmgWR0CkvzEWAPNFdX2UKGgGaAloD0MInznrU47J8r+UhpRSlGgVSzJoFkdApL7yiZfD13V9lChoBmgJaA9DCA+XHHdKRwTAlIaUUpRoFUsyaBZHQKTAxl05lvt1fZQoaAZoCWgPQwj9oC5SKOsCwJSGlFKUaBVLMmgWR0CkwIrSE12rdX2UKGgGaAloD0MIPSmTGtrADMCUhpRSlGgVSzJoFkdApMBOw1R+B3V9lChoBmgJaA9DCMu8VdehegnAlIaUUpRoFUsyaBZHQKTAED2alUJ1fZQoaAZoCWgPQwh56pEGt3UFwJSGlFKUaBVLMmgWR0Ckwers0HhTdX2UKGgGaAloD0MILquwGeAiAMCUhpRSlGgVSzJoFkdApMGvQla8pXV9lChoBmgJaA9DCMgm+RG/wg3AlIaUUpRoFUsyaBZHQKTBcxUvPC51fZQoaAZoCWgPQwgJFRxeEDEIwJSGlFKUaBVLMmgWR0CkwTR3NcGDdX2UKGgGaAloD0MIqKrQQCyb87+UhpRSlGgVSzJoFkdApMMSvaDf33V9lChoBmgJaA9DCOT2yycrZg/AlIaUUpRoFUsyaBZHQKTC1ysjmjl1fZQoaAZoCWgPQwhOJ9nqcuoAwJSGlFKUaBVLMmgWR0Ckwpuc2BJ7dX2UKGgGaAloD0MIWTDxR1F3EMCUhpRSlGgVSzJoFkdApMJdMwlByHV9lChoBmgJaA9DCOoENBE2vPq/lIaUUpRoFUsyaBZHQKTEK/TLGJh1fZQoaAZoCWgPQwj6nLtdL439v5SGlFKUaBVLMmgWR0Ckw/BegL7XdX2UKGgGaAloD0MI5e5zfLRYAsCUhpRSlGgVSzJoFkdApMO0O09hZ3V9lChoBmgJaA9DCN18I7pnXfi/lIaUUpRoFUsyaBZHQKTDdbcGkep1fZQoaAZoCWgPQwhxdJXurrP+v5SGlFKUaBVLMmgWR0CkxXl4cFQmdX2UKGgGaAloD0MIbXTOT3FcCMCUhpRSlGgVSzJoFkdApMU+1D0Dl3V9lChoBmgJaA9DCNh9x/DYz/C/lIaUUpRoFUsyaBZHQKTFA6r/82t1fZQoaAZoCWgPQwhPyqSGNsAFwJSGlFKUaBVLMmgWR0CkxMV01ZTydX2UKGgGaAloD0MIUDblCu/CEsCUhpRSlGgVSzJoFkdApMaXXPJJXnV9lChoBmgJaA9DCIvh6gCI+/y/lIaUUpRoFUsyaBZHQKTGW5T6zmh1fZQoaAZoCWgPQwgjoS3nUlwMwJSGlFKUaBVLMmgWR0Ckxh9QO4G2dX2UKGgGaAloD0MIHaopyTpc/7+UhpRSlGgVSzJoFkdApMXgsPJ7s3V9lChoBmgJaA9DCLOXbaetoRjAlIaUUpRoFUsyaBZHQKTHsaZx7zF1fZQoaAZoCWgPQwh/3H75ZAX1v5SGlFKUaBVLMmgWR0Ckx3XxOLzgdX2UKGgGaAloD0MICeHRxhGr/b+UhpRSlGgVSzJoFkdApMc5jOLR8nV9lChoBmgJaA9DCLcm3ZbIhQDAlIaUUpRoFUsyaBZHQKTG+wSrYGt1fZQoaAZoCWgPQwgogGJkyTwRwJSGlFKUaBVLMmgWR0CkyNEaESM+dX2UKGgGaAloD0MIUz9vKlKh+b+UhpRSlGgVSzJoFkdApMiViUgSvnV9lChoBmgJaA9DCHwNwXEZt/i/lIaUUpRoFUsyaBZHQKTIWXJHRTl1fZQoaAZoCWgPQwgdBYiCGdMKwJSGlFKUaBVLMmgWR0CkyBvES/TLdX2UKGgGaAloD0MIXCGsxhLW/7+UhpRSlGgVSzJoFkdApMn8x7AtWnV9lChoBmgJaA9DCJYmpaDbixHAlIaUUpRoFUsyaBZHQKTJwUiY9gZ1fZQoaAZoCWgPQwgkQiPYuD7/v5SGlFKUaBVLMmgWR0CkyYUaya/idX2UKGgGaAloD0MIBWucTUcA8b+UhpRSlGgVSzJoFkdApMlGpQ1rI3V9lChoBmgJaA9DCCic3VomowjAlIaUUpRoFUsyaBZHQKTLJjc2zfJ1fZQoaAZoCWgPQwgOFHgnn/4IwJSGlFKUaBVLMmgWR0CkyuqD9OyndX2UKGgGaAloD0MIJEIj2LjOFsCUhpRSlGgVSzJoFkdApMquQ0XP7nV9lChoBmgJaA9DCNB/D167tPC/lIaUUpRoFUsyaBZHQKTKb99c8kl1fZQoaAZoCWgPQwisjEY+r/gUwJSGlFKUaBVLMmgWR0CkzExOtW+5dX2UKGgGaAloD0MIbRyxFp8C6L+UhpRSlGgVSzJoFkdApMwQp+c6NnV9lChoBmgJaA9DCMudmWA4NwTAlIaUUpRoFUsyaBZHQKTL1HWBjF11fZQoaAZoCWgPQwgGK061FkYJwJSGlFKUaBVLMmgWR0Cky5XqAz55dX2UKGgGaAloD0MI5x2n6Eiu7r+UhpRSlGgVSzJoFkdApM1uAG0NSnV9lChoBmgJaA9DCD81XrpJbArAlIaUUpRoFUsyaBZHQKTNMl5WzWx1fZQoaAZoCWgPQwhtAgzLn6/3v5SGlFKUaBVLMmgWR0CkzPbL+xW1dX2UKGgGaAloD0MIJLVQMjk1DsCUhpRSlGgVSzJoFkdApMy4+6iCa3V9lChoBmgJaA9DCCY2H9eGCgDAlIaUUpRoFUsyaBZHQKTOgLLIPsl1fZQoaAZoCWgPQwiiKTv9oO4NwJSGlFKUaBVLMmgWR0CkzkT1CgK4dX2UKGgGaAloD0MIezGUE+3aEMCUhpRSlGgVSzJoFkdApM4IuXeFc3V9lChoBmgJaA9DCPa2mQrxaAPAlIaUUpRoFUsyaBZHQKTNyiW3Sa51fZQoaAZoCWgPQwgx7gbRWtEDwJSGlFKUaBVLMmgWR0Ckz5kNFz+4dX2UKGgGaAloD0MI9MRztoAwB8CUhpRSlGgVSzJoFkdApM9eQ2dd3XV9lChoBmgJaA9DCCrkSj0LQhPAlIaUUpRoFUsyaBZHQKTPIlGgBcR1fZQoaAZoCWgPQwjMlxdgH30SwJSGlFKUaBVLMmgWR0CkzuPSUkfLdX2UKGgGaAloD0MIUBvV6UDW/L+UhpRSlGgVSzJoFkdApNCmLaVUuXV9lChoBmgJaA9DCOHra11qxPS/lIaUUpRoFUsyaBZHQKTQapaRp111fZQoaAZoCWgPQwj+KVWi7O0SwJSGlFKUaBVLMmgWR0Ck0C6Ieo1ldX2UKGgGaAloD0MIk/yIX7GGAMCUhpRSlGgVSzJoFkdApM/v+l0o0HV9lChoBmgJaA9DCAsL7gc8sBrAlIaUUpRoFUsyaBZHQKTR1aURnOB1fZQoaAZoCWgPQwjlm21uTJ8SwJSGlFKUaBVLMmgWR0Ck0ZorvsqsdX2UKGgGaAloD0MIOV6B6ElZAMCUhpRSlGgVSzJoFkdApNFeGCZnc3V9lChoBmgJaA9DCOLJbmb0UxLAlIaUUpRoFUsyaBZHQKTRH5sTFl11ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eea7705ab641c8b3154856e4ac53c5aa5c03efe9cb12dbe776c3d703e13d55a7
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c437aa0734ea144e7527df26fcd7f9edda6bed0e35cefb109e35b06b29c8fd53
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6149f5ef70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6149f5b900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674497154423020349, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPMbcPmgRFDyoSRI/PMbcPmgRFDyoSRI/PMbcPmgRFDyoSRI/PMbcPmgRFDyoSRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6nzGPvCbFT6GEC89na+qP9ARDj8Sypu/0Ywkv6ukhT/5PbI/9AFsPxJ9PL+EgbC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA8xtw+aBEUPKhJEj97VAA8oRYPO816hzs8xtw+aBEUPKhJEj97VAA8oRYPO816hzs8xtw+aBEUPKhJEj97VAA8oRYPO816hzs8xtw+aBEUPKhJEj97VAA8oRYPO816hzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4311999 0.00903735 0.5714364 ]\n [0.4311999 0.00903735 0.5714364 ]\n [0.4311999 0.00903735 0.5714364 ]\n [0.4311999 0.00903735 0.5714364 ]]", "desired_goal": "[[ 0.38767177 0.14610267 0.04274037]\n [ 1.3334843 0.5549593 -1.2171042 ]\n [-0.6427737 1.0440878 1.3925163 ]\n [ 0.9219048 -0.7362834 -1.3789525 ]]", "observation": "[[0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]\n [0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]\n [0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]\n [0.4311999 0.00903735 0.5714364 0.00783264 0.00218336 0.00413451]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIbxNvXUs3D2DLAA+ItmqPW4eJLvwJVM9g6WIvdMiGj2R2TY+MWILPFN7BDxoul4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05022824 0.10750667 0.1251698 ]\n [ 0.08342196 -0.00250426 0.05154985]\n [-0.06672194 0.03763087 0.17856432]\n [ 0.0085073 0.00808604 0.21750796]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRz6veOqRDcCUhpRSlIwBbJRLMowBdJRHQKS2ba+N96V1fZQoaAZoCWgPQwgfLc4Y5gT3v5SGlFKUaBVLMmgWR0CktjHdXT3JdX2UKGgGaAloD0MIzgAXZMsy+r+UhpRSlGgVSzJoFkdApLX1opQUH3V9lChoBmgJaA9DCExvfy4aMgLAlIaUUpRoFUsyaBZHQKS1tuDSPU91fZQoaAZoCWgPQwiN7iB2ppD3v5SGlFKUaBVLMmgWR0Ckt3M6ij+KdX2UKGgGaAloD0MIaM76lGMSC8CUhpRSlGgVSzJoFkdApLc3i3ocJnV9lChoBmgJaA9DCLSULCehJBHAlIaUUpRoFUsyaBZHQKS2+2uPmxN1fZQoaAZoCWgPQwjdlsgFZzACwJSGlFKUaBVLMmgWR0CktryMDOkddX2UKGgGaAloD0MInDI334hu+7+UhpRSlGgVSzJoFkdApLieiBXjl3V9lChoBmgJaA9DCDz4iQPo1wLAlIaUUpRoFUsyaBZHQKS4YxbjcVR1fZQoaAZoCWgPQwgpsACmDFwBwJSGlFKUaBVLMmgWR0CkuCcR+SbIdX2UKGgGaAloD0MIob36eOi7/L+UhpRSlGgVSzJoFkdApLfoqy4WlHV9lChoBmgJaA9DCO5e7pOjgAzAlIaUUpRoFUsyaBZHQKS51Z6lchV1fZQoaAZoCWgPQwjmApfHmpH4v5SGlFKUaBVLMmgWR0CkuZoKtxMndX2UKGgGaAloD0MIP5C8cyiD9r+UhpRSlGgVSzJoFkdApLld/c32mHV9lChoBmgJaA9DCIIAGTp20AvAlIaUUpRoFUsyaBZHQKS5H4dIXj51fZQoaAZoCWgPQwjswDkjSnsIwJSGlFKUaBVLMmgWR0CkuwCBwuM/dX2UKGgGaAloD0MIAaYMHNCyBsCUhpRSlGgVSzJoFkdApLrE76pHZ3V9lChoBmgJaA9DCBssnKT5cxDAlIaUUpRoFUsyaBZHQKS6iNoakyl1fZQoaAZoCWgPQwg9K2nFN6QQwJSGlFKUaBVLMmgWR0CkukpoK2KEdX2UKGgGaAloD0MIo68gzVi0DMCUhpRSlGgVSzJoFkdApLwrJ6po9XV9lChoBmgJaA9DCNkj1Ayp4hDAlIaUUpRoFUsyaBZHQKS774dIXj51fZQoaAZoCWgPQwhauKzCZsAJwJSGlFKUaBVLMmgWR0Cku7NoSL62dX2UKGgGaAloD0MIxVbQtMTK/b+UhpRSlGgVSzJoFkdApLt07lq8DnV9lChoBmgJaA9DCFjmrboO9Q3AlIaUUpRoFUsyaBZHQKS9XbL2YfJ1fZQoaAZoCWgPQwjjF15J8hz/v5SGlFKUaBVLMmgWR0CkvSIXKr7wdX2UKGgGaAloD0MIrizRWWaRCcCUhpRSlGgVSzJoFkdApLzmDWbw0HV9lChoBmgJaA9DCGIQWDm06AzAlIaUUpRoFUsyaBZHQKS8p5yEL6V1fZQoaAZoCWgPQwhcPSe9bxwBwJSGlFKUaBVLMmgWR0CkvoDSPU8WdX2UKGgGaAloD0MI6spneR5c8r+UhpRSlGgVSzJoFkdApL5FPacqfHV9lChoBmgJaA9DCGEW2jnN4gXAlIaUUpRoFUsyaBZHQKS+CQ6IWP91fZQoaAZoCWgPQwhgdeRIZ0AKwJSGlFKUaBVLMmgWR0CkvcqZ+hGpdX2UKGgGaAloD0MIWKmgourHEsCUhpRSlGgVSzJoFkdApL+o9FF2FHV9lChoBmgJaA9DCHyd1JelHQLAlIaUUpRoFUsyaBZHQKS/bUhFEzB1fZQoaAZoCWgPQwgtJctJKH3/v5SGlFKUaBVLMmgWR0CkvzEWAPNFdX2UKGgGaAloD0MInznrU47J8r+UhpRSlGgVSzJoFkdApL7yiZfD13V9lChoBmgJaA9DCA+XHHdKRwTAlIaUUpRoFUsyaBZHQKTAxl05lvt1fZQoaAZoCWgPQwj9oC5SKOsCwJSGlFKUaBVLMmgWR0CkwIrSE12rdX2UKGgGaAloD0MIPSmTGtrADMCUhpRSlGgVSzJoFkdApMBOw1R+B3V9lChoBmgJaA9DCMu8VdehegnAlIaUUpRoFUsyaBZHQKTAED2alUJ1fZQoaAZoCWgPQwh56pEGt3UFwJSGlFKUaBVLMmgWR0Ckwers0HhTdX2UKGgGaAloD0MILquwGeAiAMCUhpRSlGgVSzJoFkdApMGvQla8pXV9lChoBmgJaA9DCMgm+RG/wg3AlIaUUpRoFUsyaBZHQKTBcxUvPC51fZQoaAZoCWgPQwgJFRxeEDEIwJSGlFKUaBVLMmgWR0CkwTR3NcGDdX2UKGgGaAloD0MIqKrQQCyb87+UhpRSlGgVSzJoFkdApMMSvaDf33V9lChoBmgJaA9DCOT2yycrZg/AlIaUUpRoFUsyaBZHQKTC1ysjmjl1fZQoaAZoCWgPQwhOJ9nqcuoAwJSGlFKUaBVLMmgWR0Ckwpuc2BJ7dX2UKGgGaAloD0MIWTDxR1F3EMCUhpRSlGgVSzJoFkdApMJdMwlByHV9lChoBmgJaA9DCOoENBE2vPq/lIaUUpRoFUsyaBZHQKTEK/TLGJh1fZQoaAZoCWgPQwj6nLtdL439v5SGlFKUaBVLMmgWR0Ckw/BegL7XdX2UKGgGaAloD0MI5e5zfLRYAsCUhpRSlGgVSzJoFkdApMO0O09hZ3V9lChoBmgJaA9DCN18I7pnXfi/lIaUUpRoFUsyaBZHQKTDdbcGkep1fZQoaAZoCWgPQwhxdJXurrP+v5SGlFKUaBVLMmgWR0CkxXl4cFQmdX2UKGgGaAloD0MIbXTOT3FcCMCUhpRSlGgVSzJoFkdApMU+1D0Dl3V9lChoBmgJaA9DCNh9x/DYz/C/lIaUUpRoFUsyaBZHQKTFA6r/82t1fZQoaAZoCWgPQwhPyqSGNsAFwJSGlFKUaBVLMmgWR0CkxMV01ZTydX2UKGgGaAloD0MIUDblCu/CEsCUhpRSlGgVSzJoFkdApMaXXPJJXnV9lChoBmgJaA9DCIvh6gCI+/y/lIaUUpRoFUsyaBZHQKTGW5T6zmh1fZQoaAZoCWgPQwgjoS3nUlwMwJSGlFKUaBVLMmgWR0Ckxh9QO4G2dX2UKGgGaAloD0MIHaopyTpc/7+UhpRSlGgVSzJoFkdApMXgsPJ7s3V9lChoBmgJaA9DCLOXbaetoRjAlIaUUpRoFUsyaBZHQKTHsaZx7zF1fZQoaAZoCWgPQwh/3H75ZAX1v5SGlFKUaBVLMmgWR0Ckx3XxOLzgdX2UKGgGaAloD0MICeHRxhGr/b+UhpRSlGgVSzJoFkdApMc5jOLR8nV9lChoBmgJaA9DCLcm3ZbIhQDAlIaUUpRoFUsyaBZHQKTG+wSrYGt1fZQoaAZoCWgPQwgogGJkyTwRwJSGlFKUaBVLMmgWR0CkyNEaESM+dX2UKGgGaAloD0MIUz9vKlKh+b+UhpRSlGgVSzJoFkdApMiViUgSvnV9lChoBmgJaA9DCHwNwXEZt/i/lIaUUpRoFUsyaBZHQKTIWXJHRTl1fZQoaAZoCWgPQwgdBYiCGdMKwJSGlFKUaBVLMmgWR0CkyBvES/TLdX2UKGgGaAloD0MIXCGsxhLW/7+UhpRSlGgVSzJoFkdApMn8x7AtWnV9lChoBmgJaA9DCJYmpaDbixHAlIaUUpRoFUsyaBZHQKTJwUiY9gZ1fZQoaAZoCWgPQwgkQiPYuD7/v5SGlFKUaBVLMmgWR0CkyYUaya/idX2UKGgGaAloD0MIBWucTUcA8b+UhpRSlGgVSzJoFkdApMlGpQ1rI3V9lChoBmgJaA9DCCic3VomowjAlIaUUpRoFUsyaBZHQKTLJjc2zfJ1fZQoaAZoCWgPQwgOFHgnn/4IwJSGlFKUaBVLMmgWR0CkyuqD9OyndX2UKGgGaAloD0MIJEIj2LjOFsCUhpRSlGgVSzJoFkdApMquQ0XP7nV9lChoBmgJaA9DCNB/D167tPC/lIaUUpRoFUsyaBZHQKTKb99c8kl1fZQoaAZoCWgPQwisjEY+r/gUwJSGlFKUaBVLMmgWR0CkzExOtW+5dX2UKGgGaAloD0MIbRyxFp8C6L+UhpRSlGgVSzJoFkdApMwQp+c6NnV9lChoBmgJaA9DCMudmWA4NwTAlIaUUpRoFUsyaBZHQKTL1HWBjF11fZQoaAZoCWgPQwgGK061FkYJwJSGlFKUaBVLMmgWR0Cky5XqAz55dX2UKGgGaAloD0MI5x2n6Eiu7r+UhpRSlGgVSzJoFkdApM1uAG0NSnV9lChoBmgJaA9DCD81XrpJbArAlIaUUpRoFUsyaBZHQKTNMl5WzWx1fZQoaAZoCWgPQwhtAgzLn6/3v5SGlFKUaBVLMmgWR0CkzPbL+xW1dX2UKGgGaAloD0MIJLVQMjk1DsCUhpRSlGgVSzJoFkdApMy4+6iCa3V9lChoBmgJaA9DCCY2H9eGCgDAlIaUUpRoFUsyaBZHQKTOgLLIPsl1fZQoaAZoCWgPQwiiKTv9oO4NwJSGlFKUaBVLMmgWR0CkzkT1CgK4dX2UKGgGaAloD0MIezGUE+3aEMCUhpRSlGgVSzJoFkdApM4IuXeFc3V9lChoBmgJaA9DCPa2mQrxaAPAlIaUUpRoFUsyaBZHQKTNyiW3Sa51fZQoaAZoCWgPQwgx7gbRWtEDwJSGlFKUaBVLMmgWR0Ckz5kNFz+4dX2UKGgGaAloD0MI9MRztoAwB8CUhpRSlGgVSzJoFkdApM9eQ2dd3XV9lChoBmgJaA9DCCrkSj0LQhPAlIaUUpRoFUsyaBZHQKTPIlGgBcR1fZQoaAZoCWgPQwjMlxdgH30SwJSGlFKUaBVLMmgWR0CkzuPSUkfLdX2UKGgGaAloD0MIUBvV6UDW/L+UhpRSlGgVSzJoFkdApNCmLaVUuXV9lChoBmgJaA9DCOHra11qxPS/lIaUUpRoFUsyaBZHQKTQapaRp111fZQoaAZoCWgPQwj+KVWi7O0SwJSGlFKUaBVLMmgWR0Ck0C6Ieo1ldX2UKGgGaAloD0MIk/yIX7GGAMCUhpRSlGgVSzJoFkdApM/v+l0o0HV9lChoBmgJaA9DCAsL7gc8sBrAlIaUUpRoFUsyaBZHQKTR1aURnOB1fZQoaAZoCWgPQwjlm21uTJ8SwJSGlFKUaBVLMmgWR0Ck0ZorvsqsdX2UKGgGaAloD0MIOV6B6ElZAMCUhpRSlGgVSzJoFkdApNFeGCZnc3V9lChoBmgJaA9DCOLJbmb0UxLAlIaUUpRoFUsyaBZHQKTRH5sTFl11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (556 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.8657028504647313, "std_reward": 1.607473604176676, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T18:50:46.878244"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de7cd95f5e09b453a837931446f04f3917b9e06ecb2ce01530774459254e2bc
3
+ size 3056