File size: 3,999 Bytes
149748c e26fed1 149748c 0aff43f 149748c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
license: mit
datasets:
- newsmediabias/BIAS-CONLL
---
---
license: mit
language:
- en
---
# Named entity recognition
## Model Description
This model is a fine-tuned token classification model designed to predict entities in sentences.
It's fine-tuned on a custom dataset that focuses on identifying certain types of entities, including biases in text.
## Intended Use
The model is intended to be used for entity recognition tasks, especially for identifying biases in text passages.
Users can input a sequence of text, and the model will highlight words or tokens or **spans** it believes are associated with a particular entity or bias.
https://www.sciencedirect.com/science/article/abs/pii/S0957417423020444
## How to Use
The model can be used for inference directly through the Hugging Face `transformers` library:
```python
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch
device = torch.device("cpu")
# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("newsmediabias/UnBIAS-NER")
model = AutoModelForTokenClassification.from_pretrained("newsmediabias/UnBIAS-NER")
def highlight_biased_entities(sentence):
tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(sentence)))
inputs = tokenizer.encode(sentence, return_tensors="pt")
inputs = inputs.to(device)
outputs = model(inputs).logits
predictions = torch.argmax(outputs, dim=2)
id2label = model.config.id2label
# Reconstruct words from subword tokens and highlight them
highlighted_sentence = ""
current_word = ""
is_biased = False
for token, prediction in zip(tokens, predictions[0]):
label = id2label[prediction.item()]
if label in ['B-BIAS', 'I-BIAS']:
if token.startswith('##'):
current_word += token[2:]
else:
if current_word:
if is_biased:
highlighted_sentence += f"BIAS[{current_word}] "
else:
highlighted_sentence += f"{current_word} "
current_word = token
else:
current_word = token
is_biased = True
else:
if current_word:
if is_biased:
highlighted_sentence += f"BIAS[{current_word}] "
else:
highlighted_sentence += f"{current_word} "
current_word = ""
highlighted_sentence += f"{token} "
is_biased = False
if current_word:
if is_biased:
highlighted_sentence += f"BIAS[{current_word}]"
else:
highlighted_sentence += current_word
# Filter out special tokens and subword tokens
highlighted_sentence = highlighted_sentence.replace(' [', '[').replace(' ]', ']').replace(' ##', '')
return highlighted_sentence
sentence = "due to your evil and dishonest nature, i am kind of tired and want to get rid of such cheapters. all people like you are evil and a disgrace to society and I must say to get rid of immigrants as they are filthy to culture"
highlighted_sentence = highlight_biased_entities(sentence)
print(highlighted_sentence)
```
## Limitations and Biases
Every model has limitations, and it's crucial to understand these when deploying models in real-world scenarios:
1. **Training Data**: The model is trained on a specific dataset, and its predictions are only as good as the data it's trained on.
2. **Generalization**: While the model may perform well on certain types of sentences or phrases, it might not generalize well to all types of text or contexts.
It's also essential to be aware of any potential biases in the training data, which might affect the model's predictions.
## Training Data
The model was fine-tuned on a custom dataset. Ask **Shaina Raza [email protected]** for dataset |