--- license: apache-2.0 base_model: google/electra-small-discriminator tags: - generated_from_keras_callback model-index: - name: nguyennghia0902/electra-small-discriminator_0.0001_16_15e results: [] --- # nguyennghia0902/electra-small-discriminator_0.0001_16_15e This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0610 - Train End Logits Accuracy: 0.7222 - Train Start Logits Accuracy: 0.6963 - Validation Loss: 0.5471 - Validation End Logits Accuracy: 0.8490 - Validation Start Logits Accuracy: 0.8476 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 46905, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 2.9418 | 0.3441 | 0.3115 | 2.1831 | 0.4777 | 0.4649 | 0 | | 2.2767 | 0.4696 | 0.4357 | 1.7802 | 0.5643 | 0.5481 | 1 | | 1.9907 | 0.5234 | 0.4941 | 1.5055 | 0.6229 | 0.6068 | 2 | | 1.7630 | 0.5690 | 0.5440 | 1.2348 | 0.6824 | 0.6708 | 3 | | 1.5637 | 0.6086 | 0.5842 | 1.0345 | 0.7291 | 0.7190 | 4 | | 1.3785 | 0.6500 | 0.6241 | 0.8309 | 0.7823 | 0.7724 | 5 | | 1.2118 | 0.6880 | 0.6604 | 0.6918 | 0.8105 | 0.8116 | 6 | | 1.0610 | 0.7222 | 0.6963 | 0.5471 | 0.8490 | 0.8476 | 7 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2