File size: 4,036 Bytes
16ad4e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11a78a
 
 
 
 
 
 
3fe2464
16ad4e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e649f
54e6b0f
1e87221
6147743
b93c0b8
8d7164b
9de7f7c
fe79ae8
f11a78a
16ad4e4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
- generated_from_keras_callback
model-index:
- name: nguyennghia0902/electra-small-discriminator_1e-05_16
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# nguyennghia0902/electra-small-discriminator_1e-05_16

This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2953
- Train End Logits Accuracy: 0.4633
- Train Start Logits Accuracy: 0.4286
- Validation Loss: 2.1111
- Validation End Logits Accuracy: 0.4964
- Validation Start Logits Accuracy: 0.4762
- Epoch: 9
- {'name': 'project02_google/electra-small-discriminator_1e-05_16', 'lnr': 1e-05, 'epoch': 10, 'batch_size': 16, 'time': 15051.128346920013, 'accuracy': 0, 'f1_score': 0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 31270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 3.6922     | 0.2260                    | 0.1855                      | 2.9570          | 0.3296                         | 0.2955                           | 0     |
| 2.9538     | 0.3373                    | 0.2952                      | 2.6908          | 0.3760                         | 0.3455                           | 1     |
| 2.7599     | 0.3690                    | 0.3326                      | 2.5323          | 0.4072                         | 0.3820                           | 2     |
| 2.6351     | 0.3920                    | 0.3568                      | 2.4256          | 0.4286                         | 0.4008                           | 3     |
| 2.5472     | 0.4089                    | 0.3742                      | 2.3283          | 0.4498                         | 0.4264                           | 4     |
| 2.4725     | 0.4221                    | 0.3912                      | 2.2602          | 0.4605                         | 0.4399                           | 5     |
| 2.4119     | 0.4369                    | 0.4017                      | 2.1953          | 0.4765                         | 0.4559                           | 6     |
| 2.3562     | 0.4505                    | 0.4144                      | 2.1406          | 0.4888                         | 0.4689                           | 7     |
| 2.3220     | 0.4566                    | 0.4216                      | 2.1207          | 0.4947                         | 0.4749                           | 8     |
| 2.2953     | 0.4633                    | 0.4286                      | 2.1111          | 0.4964                         | 0.4762                           | 9     |


### Framework versions

- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2