--- license: apache-2.0 base_model: google/electra-small-discriminator tags: - generated_from_keras_callback model-index: - name: nguyennghia0902/electra-small-discriminator_5e-05_16 results: [] --- # nguyennghia0902/electra-small-discriminator_5e-05_16 This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.1054 - Train End Logits Accuracy: 0.5011 - Train Start Logits Accuracy: 0.4714 - Validation Loss: 1.6636 - Validation End Logits Accuracy: 0.5884 - Validation Start Logits Accuracy: 0.5755 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 31270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 3.0718 | 0.3197 | 0.2882 | 2.3841 | 0.4358 | 0.4158 | 0 | | 2.4050 | 0.4412 | 0.4100 | 1.9607 | 0.5286 | 0.5126 | 1 | | 2.1054 | 0.5011 | 0.4714 | 1.6636 | 0.5884 | 0.5755 | 2 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2