"""A simple, flexible implementation of a GPT model. Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ import math import warnings from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from .attention import is_flash_v2_installed if is_flash_v2_installed(): try: from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding except Exception as e: raise e from transformers import PreTrainedModel, PreTrainedTokenizerBase from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes from .blocks import MPTBlock from .custom_embedding import SharedEmbedding from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY from .ffn import MPTMLP as MPTMLP from .ffn import build_ffn as build_ffn from .norm import NORM_CLASS_REGISTRY from .configuration_mpt import MPTConfig from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm from .meta_init_context import init_empty_weights from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY try: from .flash_attn_triton import flash_attn_func as flash_attn_func except: pass import logging log = logging.getLogger(__name__) def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int): if rope_impl == 'dail': return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu') elif rope_impl == 'hf': if rope_hf_config['type'] == 'no_scaling': return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu') elif rope_hf_config['type'] == 'linear': return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu') elif rope_hf_config['type'] == 'dynamic': return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu') raise ValueError('rope_impl needs to be either dail or hf') def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]): """Generates the attention mask used for sequence masking in FA v2. Only supports sequence id based sparse attention for no attention masking or attention masking with right padding. In case of left padding: 1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407). 2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention. Args: sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len). S (int): Sequence length attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking. attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention. attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len) Returns: attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is: ``` [ [2, 3, 0, 0, 0, 0], [3, 2, 0, 0, 0, 0], [6, 0, 0, 0, 0, 0] ] ``` , which refers to the 3D-attention mask: ``` [ [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1] ] ] ```. (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .) """ attention_mask_in_length = None if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'): if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]: raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.') if S != sequence_id.shape[-1]: raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).') attention_mask_in_length = torch.nn.functional.one_hot(sequence_id) if attention_mask is not None: attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0) attention_mask_in_length = attention_mask_in_length.sum(dim=1) attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0) return attention_mask_in_length def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor: seq_len = sequence_id.shape[-1] if seq_len > max_seq_len: raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}') attn_bias = attn_bias[..., :seq_len, :seq_len] cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias class MPTPreTrainedModel(PreTrainedModel): config_class = MPTConfig base_model_prefix = 'model' _no_split_modules = ['MPTBlock'] class MPTModel(MPTPreTrainedModel): def __init__(self, config: MPTConfig): config._validate_config() super().__init__(config) self.attn_impl = config.attn_config['attn_impl'] self.prefix_lm = config.attn_config['prefix_lm'] self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] self.alibi = config.attn_config['alibi'] self.alibi_bias_max = config.attn_config['alibi_bias_max'] self.learned_pos_emb = config.learned_pos_emb if config.init_device == 'mixed': if dist.get_local_rank() == 0: config.init_device = 'cpu' else: config.init_device = 'meta' if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).') norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] self.embedding_fraction = config.embedding_fraction self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device) if self.learned_pos_emb: self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) self.emb_drop = nn.Dropout(config.emb_pdrop) self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)]) self.norm_f = norm_class(config.d_model, device=config.init_device) self.rope = config.attn_config['rope'] self.rope_impl = None if self.rope: self.rope_impl = config.attn_config['rope_impl'] self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len) if config.init_device != 'meta': log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.') self.apply(self.param_init_fn) self.is_causal = not self.prefix_lm self._attn_bias_initialized = False self.attn_bias = None self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) if config.no_bias: for module in self.modules(): if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): log.info(f'Removing bias ({module.bias}) from {module}.') module.register_parameter('bias', None) if hasattr(module, 'use_bias'): log.info(f'Setting use_bias=False for {module}.') module.use_bias = False log.debug(self) log.debug(f"Using {self.config.init_config['name']} initialization.") def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: return self.wte def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: self.wte = value @torch.no_grad() def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]: if not self._attn_bias_initialized: if self.attn_bias_shape: self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) self._attn_bias_initialized = True if self.attn_impl == 'flash': return (self.attn_bias, attention_mask) if self.attn_bias is not None: self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) attn_bias = self.attn_bias if self.prefix_lm: assert isinstance(attn_bias, torch.Tensor) assert isinstance(prefix_mask, torch.Tensor) attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) if self.attn_uses_sequence_id and sequence_id is not None: assert isinstance(attn_bias, torch.Tensor) attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len) if attention_mask is not None: s_k = attention_mask.shape[-1] if attn_bias is None: attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) else: _s_k = max(0, attn_bias.size(-1) - s_k) attn_bias = attn_bias[:, :, :, _s_k:] if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.') min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val) return (attn_bias, attention_mask) def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor: (s_k, s_q) = attn_bias.shape[-2:] if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.') seq_len = prefix_mask.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}') attn_bias = attn_bias[..., :seq_len, :seq_len] causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) prefix = prefix_mask.view(-1, 1, 1, seq_len) cannot_attend = ~torch.logical_or(causal, prefix.bool()) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast: return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if attention_mask is not None: attention_mask = attention_mask.bool() if prefix_mask is not None: prefix_mask = prefix_mask.bool() if not return_dict: raise NotImplementedError('return_dict False is not implemented yet for MPT') if output_attentions: if self.attn_impl != 'torch': raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.') if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]): raise NotImplementedError('MPT does not support training with left padding.') if self.prefix_lm and prefix_mask is None: raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.') if self.training: if self.attn_uses_sequence_id and sequence_id is None: raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') elif self.attn_uses_sequence_id is False and sequence_id is not None: warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.') if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds.') elif input_ids is not None: S = input_ids.size(1) x = self.wte(input_ids) input_device = input_ids.device elif inputs_embeds is not None: S = inputs_embeds.size(1) x = inputs_embeds input_device = inputs_embeds.device else: raise ValueError('You must specify input_ids or inputs_embeds') assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' rotary_emb_w_meta_info = None if self.learned_pos_emb or self.rope: past_position = 0 if past_key_values is not None: if len(past_key_values) != self.config.n_layers: raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).') past_position = past_key_values[0][0].size(1) if self.attn_impl == 'torch': past_position = past_key_values[0][0].size(3) if self.learned_pos_emb and S + past_position > self.config.max_seq_len: raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.') if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'): pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0) if attention_mask is not None: pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) if self.learned_pos_emb: x = x + self.wpe(pos) elif self.rope and self.rope_impl == 'hf': rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position} elif self.rope and self.rope_impl == 'dail': rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position} if self.embedding_fraction == 1: x = self.emb_drop(x) else: x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction) assert isinstance(self.emb_drop, nn.Module) x = self.emb_drop(x_shrunk) (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id) attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask) alibi_slopes = None if self.alibi and self.attn_impl == 'flash': alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True) presents = () if use_cache else None if use_cache and past_key_values is None: past_key_values = [() for _ in range(self.config.n_layers)] all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for (b_idx, block) in enumerate(self.blocks): if output_hidden_states: assert all_hidden_states is not None all_hidden_states = all_hidden_states + (x,) past_key_value = past_key_values[b_idx] if past_key_values is not None else None (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), attention_mask_in_length=attention_mask_in_length, alibi_slopes=alibi_slopes) if presents is not None: presents += (present,) if output_attentions: assert all_self_attns is not None all_self_attns = all_self_attns + (attn_weights,) x = self.norm_f(x) if output_hidden_states: assert all_hidden_states is not None all_hidden_states = all_hidden_states + (x,) return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns) def param_init_fn(self, module: nn.Module) -> None: init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) def fsdp_wrap_fn(self, module: nn.Module) -> bool: return isinstance(module, MPTBlock) def activation_checkpointing_fn(self, module: nn.Module) -> bool: return isinstance(module, MPTBlock) class MPTForCausalLM(MPTPreTrainedModel): def __init__(self, config: MPTConfig): super().__init__(config) log.info(f'Instantiating an MPTForCausalLM model from {__file__}') self.transformer: MPTModel = MPTModel(config) self.lm_head = None if not config.tie_word_embeddings: self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device) self.lm_head._fsdp_wrap = True for child in self.transformer.children(): if isinstance(child, torch.nn.ModuleList): continue if isinstance(child, torch.nn.Module): child._fsdp_wrap = True self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == 'inv_sqrt_d_model': logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") self.logit_scale = logit_scale def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: return self.transformer.get_input_embeddings() def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: self.transformer.set_input_embeddings(value) def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]: if self.lm_head is not None: return self.lm_head return self.transformer.get_input_embeddings() def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None: if self.lm_head is not None: self.lm_head = new_embeddings else: if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)): raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.') warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.') self.transformer.set_input_embeddings(new_embeddings) def tie_weights(self) -> None: self.lm_head = None def set_decoder(self, decoder: MPTModel) -> None: self.transformer = decoder def get_decoder(self) -> MPTModel: return self.transformer def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast: return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds) if self.lm_head is not None: logits = self.lm_head(outputs.last_hidden_state) else: out = outputs.last_hidden_state out = out.to(self.transformer.wte.weight.device) logits = self.transformer.wte(out, True) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') logits *= self.logit_scale loss = None if labels is not None: _labels = torch.roll(labels, shifts=-1) _labels[:, -1] = -100 loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1)) return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions) def param_init_fn(self, module: nn.Module) -> None: init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) def fsdp_wrap_fn(self, module: nn.Module) -> bool: return isinstance(module, MPTBlock) def activation_checkpointing_fn(self, module: nn.Module) -> bool: act_ckpt_list = getattr(self.config, 'activation_checkpointing_target', None) or ['MPTBlock'] if isinstance(act_ckpt_list, str): act_ckpt_list = [act_ckpt_list] elif not isinstance(act_ckpt_list, list): raise ValueError(f'activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}') if 'MPTBlock' in act_ckpt_list or 'mptblock' in act_ckpt_list: if len(act_ckpt_list) > 1: log.info('Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target).') return isinstance(module, MPTBlock) mod_types = () for mod_name in act_ckpt_list: if mod_name.lower() == 'mptblock': mod_types += (MPTBlock,) elif mod_name in ATTN_CLASS_REGISTRY: mod_types += (ATTN_CLASS_REGISTRY[mod_name],) elif mod_name in FFN_CLASS_REGISTRY: mod_types += (FFN_CLASS_REGISTRY[mod_name],) elif mod_name in NORM_CLASS_REGISTRY: mod_types += (NORM_CLASS_REGISTRY[mod_name],) else: msg = ', '.join(list(ATTN_CLASS_REGISTRY.keys()) + list(FFN_CLASS_REGISTRY.keys()) + list(NORM_CLASS_REGISTRY.keys()) + ['MPTBlock']) raise ValueError(f'{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}.') return isinstance(module, mod_types) def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]: attention_mask = kwargs['attention_mask'].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError('MPT does not support generation with right padding.') if self.transformer.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if self.transformer.prefix_lm: prefix_mask = torch.ones_like(attention_mask) if kwargs.get('use_cache') == False: raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') else: prefix_mask = None if inputs_embeds is not None and past_key_values is None: model_inputs = {'inputs_embeds': inputs_embeds} else: model_inputs = {'input_ids': input_ids} model_inputs.update({'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}) return model_inputs @staticmethod def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]: """Used by HuggingFace generate when using beam search with kv-caching. See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 for an example in transformers. """ reordered_past = [] for layer_past in past_key_values: reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))] return reordered_past