update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- beans
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: vit-base-beans
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: beans
|
18 |
+
type: beans
|
19 |
+
args: default
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.9849624060150376
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# vit-base-beans
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.0505
|
34 |
+
- Accuracy: 0.9850
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 0.0002
|
54 |
+
- train_batch_size: 16
|
55 |
+
- eval_batch_size: 8
|
56 |
+
- seed: 42
|
57 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
+
- lr_scheduler_type: linear
|
59 |
+
- num_epochs: 8
|
60 |
+
- mixed_precision_training: Native AMP
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
66 |
+
| 0.1166 | 1.54 | 100 | 0.0764 | 0.9850 |
|
67 |
+
| 0.1607 | 3.08 | 200 | 0.2114 | 0.9398 |
|
68 |
+
| 0.0067 | 4.62 | 300 | 0.0692 | 0.9774 |
|
69 |
+
| 0.005 | 6.15 | 400 | 0.0944 | 0.9624 |
|
70 |
+
| 0.0043 | 7.69 | 500 | 0.0505 | 0.9850 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.16.2
|
76 |
+
- Pytorch 1.10.0+cu111
|
77 |
+
- Datasets 1.18.3
|
78 |
+
- Tokenizers 0.11.0
|